Innovation Union: Costs and Benefits of Innovation Policy Coordination

Teodora Borota University of Uppsala Fabrice Defever University of Lille and LSE-CEP

Giammario Impullitti University of Nottingham, CEPR and LSE-CEP

Adam Hal Spencer University of Nottingham

Fifth INFER / ERMEES Macroeconomics Workshop 2023 Friday December 1st 2023

Roadmap

Quantitative Exercises

Model Variants and Other Exercises

• What are the growth and welfare effects of innovation policy coordination across regions?

- What are the growth and welfare effects of innovation policy coordination across regions?
 - Subsidy to cost of hiring scientists for R&D.

Motivation

• European Union (E.U.) serves as the policy motivation.

Motivation

- European Union (E.U.) serves as the policy motivation.
- Policy coordination:
 - Ever closer union,
 - Brexit.

Motivation

- European Union (E.U.) serves as the policy motivation.
- Policy coordination:
 - Ever closer union,
 - Brexit.
- Innovation policy: Horizon Europe (2021-2027)
 - ► Funding of €95.5b for R&D grants across the union.
 - **Single** innovation market.
 - ▶ Builds-off Horizon 2020 (2014–2020): budget €80b.

(i) Document empirical facts on asymmetries in innovation performance and policy across the E.U.

- (i) Document empirical facts on asymmetries in innovation performance and policy across the E.U.
- (ii) Develop a general two-country Schumpeterian growth model:
 - ▶ West (W, old E.U. members) and East (E, new E.U. members).
 - Firms compete in quality for market leadership.

- (i) Document empirical facts on asymmetries in innovation performance and policy across the E.U.
- (ii) Develop a general two-country Schumpeterian growth model:
 - ▶ West (W, old E.U. members) and East (E, new E.U. members).
 - Firms compete in quality for market leadership.
- (iii) Calibrate to E.U. data and run policy experiments.
 - Observed subsidy rates v.s. coordinated.
 - Uncoordinated subsidy rates v.s. coordinated.
 - Steady state and transition dynamics exercises.

• Two model variants:

- Two model variants:
 - (a) Baseline: semi-endogenous (Jones 1995 JPE) growth.
 - Policy has only transitional effects on growth.

- Two model variants:
 - (a) Baseline: semi-endogenous (Jones 1995 JPE) growth.
 - Policy has only transitional effects on growth.
 - (b) Add FDI and knowledge spillovers through multinational activity.

Qualitative Channels

• Consider moving to the optimal coordinated subsidy rates.

Qualitative Channels

- Consider moving to the optimal coordinated subsidy rates.
- Four key externalities
 - a. Strategic motive: business-stealing gives over-investment in R&D.
 - b. Inter-temporal effect: under-investment.
 - c. Diversification: decreasing returns at country-level.
 - d. Consumer surplus: price *level* effects from innovation.

Preview of Results

- Baseline: internalising strategic and diversification dominates inter-temporal effect.
 - ▶ Gains to coordination are large.
 - ▶ Optimal coordinated rates -39% and 59% for W and E respectively.
 - ▶ Rates are 12% and 10% in the data.

Preview of Results

- FDI extension: transfer of knowledge reverses the result.
 - Inter-temporal effect dominates.
 - ▶ Optimal coordinated rates 33% and -99%.
 - ▶ 7.5% welfare gains in consumption equivalents.

Preview of Results

• Model variants highlight the important role of knowledge spillovers in shaping coordination gains and key externalities.

Roadmap

Quantitative Exercises

Model Variants and Other Exercises

World

• World with two countries: W and E.

• Continuous time.

• Trade in goods.

• Set of consumed good same across countries.

• Representative households; populations grow at rate n. Details

World

• Horizontal differentiation: continuum of varieties (denoted $\omega \in [0, 1]$).

- Vertical differentiation: vintages of each variety.
- Only the top quality vintage consumed in each variety.
 - Production controlled by firm from either W or E.

• Innovation arrival gives $\lambda > 1$ jump in quality.

- Potential entrants *i* challenge incumbents on each variety.
 - Creative destruction

- Potential entrants *i* challenge incumbents on each variety.
 - Creative destruction

• Arrival rate production function

for country $K \in \{W, E\}$.

- Potential entrants *i* challenge incumbents on each variety.
 - Creative destruction

• Arrival rate production function

for country $K \in \{W, E\}$.

• Decreasing returns in research employment L^{K} : $\alpha \in (0, 1)$

• Productivity country $K \in \{W, E\}$

• \widehat{Q}^{K} is country-specific average of aggregate quality from each K.

• Productivity country $K \in \{W, E\}$

- \widehat{Q}^{K} is country-specific average of aggregate quality from each K.
- $\phi < 1$: semi-endogenous growth
 - Decreasing returns to knowledge spillovers

• Knowledge spillovers affecting R&D productivity:

$$\widehat{Q}^{K}(t) = \underbrace{Q^{K}(t)^{\beta}}_{\text{Local quality aggregate}} \underbrace{Q^{K}(t)^{\beta}}_{Q(t)^{(1-\beta)}}$$

where

$$egin{aligned} Q(t) &= \int_0^1 q(\omega,t) d\omega \ Q^{K}(t) &= \int_{\omega \in \omega^K} q(\omega,t) d\omega. \end{aligned}$$

• Parameter $\beta \in [0.5, 1]$ captures local bias.

Subsidy Instruments

• Subsidy to wage bill of hiring scientists $s^{K} \in [0, 1]$.

• Scientist wage bill post-subsidy:

$$(1- {\color{black}{s^{\mathcal{K}}}}) \underbrace{\ell_i^{\mathcal{K}} w^{\mathcal{K}}}_{ ext{Scientist wage bill firm}}$$

i

Equilibrium Innovation

Potential entrants maximise expected profits

subject to arrival rate production function.

Incumbent value

Equilibrium Definition

- Equilibrium is a set of endogenous aggregate objects such that
 - Households optimise in each country Show,
 - Potential entrants make zero expected profits in each country Show,
 - Labour markets clear in each country Show,
 - Aggregate growth determined by innovation intensity in each K and quality improvement λ (show).

Roadmap

Model Variants and Other Exercises

Exercise Design

- Observed scenario
 - ▶ Equilibrium with subsidies fixed at rates in the data.

Exercise Design

- Observed scenario
 - Equilibrium with subsidies fixed at rates in the data.

- Coordinated scenario:
 - ▶ Choose 2 subsidy rates to maximise total E.U. welfare.

Exercise Design

- a. Steady state exercises.
- b. Transition exercises:
 - Initial steady state at observed subsidy rates.
 - Set alternative counterfactual rate once and for all at t = 0.
 - ▶ Map transition path to counterfactual steady state.
 - Account for transition path in welfare computations.

Optimal R&D Subsidy Rates

	Transition		Steady	/ State
	s^W	sE	s^W	s ^E
Observed	0.12	0.10	0.12	0.10
Coordinated	-0.39	0.59	-0.99	0.55

	Transition			Steady State		
	W	Ε	EU	W	Ε	EU
Coordinated vs observed	-0.07	0.23	0.16	-0.09	0.41	0.32

	Transition			Steady State		
	W	Ε	EU	W	Ε	EU
Coordinated vs observed	-0.07	0.23	0.16	-0.09	0.41	0.32
Strategic motive	0.02	0.32	0.34	0.02	0.51	0.53

	Transition			Steady State		
	W	Ε	EU	W	Ε	EU
Coordinated vs observed	-0.07	0.23	0.16	-0.09	0.41	0.32
Strategic motive	0.02	0.32	0.34	0.02	0.51	0.53
Consumer surplus effect	-0.06	-0.06	-0.12	-0.11	-0.11	-0.22

	Transition			Steady State		
	W	Ε	EU	W	Ε	EU
Coordinated vs observed	-0.07	0.23	0.16	-0.09	0.41	0.32
Strategic motive	0.02	0.32	0.34	0.02	0.51	0.53
Consumer surplus effect	-0.06	-0.06	-0.12	-0.11	-0.11	-0.22
Intertemporal spillovers	-0.03	-0.03	-0.06	0.00	0.00	0.00

Roadmap

Quantitative Exercises

Model Variants and Other Exercises

Model Variants and Other Exercises

1. FDI: include multinationals. Show

2. Policy Horizons. Show

Roadmap

Quantitative Exercises

Model Variants and Other Exercises

• What are the gains to innovation policy coordination?

- What are the gains to innovation policy coordination?
- Develop a quantitative framework:
 - Can study steady states and the transition.
 - Extended to include knowledge transfer through multinationals.

- What are the gains to innovation policy coordination?
- Develop a quantitative framework:
 - Can study steady states and the transition.
 - Extended to include knowledge transfer through multinationals.
- Gains are lower when accounting for the transition.

- What are the gains to innovation policy coordination?
- Develop a quantitative framework:
 - Can study steady states and the transition.
 - Extended to include knowledge transfer through multinationals.
- Gains are lower when accounting for the transition.
- Takeaways:
 - Spillovers matter!
 - Gains are large: 7% in FDI variant.

Addition of FDI: Model

• W leaders can offshore production to save on manufacturing costs.

Addition of FDI: Model

- W leaders can offshore production to save on manufacturing costs.
- Product cycles
 - ▶ Ideas start in W ($\omega \in \omega^W$),
 - W firms choose to offshore as multinationals ($\omega \in \omega^M$),
 - Once offshored, E can start innovating on that variety,
 - ▶ *E* leadership ($\omega \in \omega^E$),
 - ▶ W leadership.

Spencer (Nottingham)

Addition of FDI: Model

• Innovation productivity terms for sector $K \in \{W, M, E\}$

$$egin{aligned} &A^W = \gamma^W \; \widehat{Q}^W(t)^\phi \; q^{-1} \ &A^M = \gamma^M \; \widehat{Q}^W(t)^\phi \; q^{-1} \ &A^E = \gamma^E \; \widehat{Q}^E(t)^\phi \; q^{-1} \end{aligned}$$

Spencer (Nottingham)

Addition of FDI: Model

• Innovation productivity terms for sector $K \in \{W, M, E\}$

$$egin{aligned} & A^W = \gamma^W \; \widehat{Q}^W(t)^\phi \; q^{-1} \ & A^M = \gamma^M \; \widehat{Q}^W(t)^\phi \; q^{-1} \ & A^E = \gamma^E \; \widehat{Q}^E(t)^\phi \; q^{-1} \end{aligned}$$

where

$$egin{aligned} \widehat{Q}^{W}(t) &= Q^{W}(t)^{eta} \; Q(t)^{1-eta} \ \widehat{Q}^{E}(t) &= Q^{E+M}(t)^{eta} \; Q(t)^{1-eta} \end{aligned}$$

and

$$Q^{E+M}(t) = \int_{\omega \in \omega^M \cup \omega^E} q(\omega, t) d\omega.$$

Addition of FDI: Results

		Bacolin	0	With EDI		
		Daseiin	e			
	s^W	sE		s^W	s ^E	
Observed	0.12	0.10				
Coordinated	-0.39	0.59				
Welfare gains	W	Е	W+E	W	Е	W+E
Coordinated vs observed (CEV)	-0.07	0.23	0.16			
Strategic motive	0.02	0.32	0.34			
Consumer surplus	-0.06	-0.06	-0.12			
Intertemporal spillovers	-0.03	-0.03	-0.06			

All inclusive of transition

Addition of FDI: Results

	Baseline			With FDI		
	s^W	s ^E		s ^W	sE	
Observed	0.12	0.10		0.12	0.10	
Coordinated	-0.39	0.59		0.33	-0.99	
Welfare gains	W	E	W+E	W	E	W+E
Coordinated vs observed (CEV)	-0.07	0.23	0.16	0.05	0.02	0.07
Strategic motive	0.02	0.32	0.34	-0.01	-0.04	-0.05
Consumer surplus	-0.06	-0.06	-0.12	0.00	0.00	0.00
Intertemporal spillovers	-0.03	-0.03	-0.06	0.06	0.06	0.13

All inclusive of transition

Fully Endogenous Variant: Model

• Remove decreasing returns to knowledge spillovers:

• Also some adjustment to arrival rate production function.

Fully Endogenous Variant: Results

	Baseline			Fully endogenous		
	s^W	sE		s^W	sE	
Observed	0.12	0.10				
Coordinated	-0.39	0.59				
			I			
Welfare gains	W	Е	W+E	W	Е	W+E
Coordinated vs observed (CEV)	-0.07	0.23	0.16			
Strategic motive	0.02	0.32	0.34			
Consumer surplus	-0.06	-0.06	-0.12			
Intertemporal spillovers	-0.03	-0.03	-0.06			

All inclusive of transition

Fully Endogenous Variant: Results

	Baseline			Fully endogenous		
	s^W	sE		s^W	sE	
Observed	0.12	0.10		0.12	0.10	
Coordinated	-0.39	0.59		0.83	0.83	
			I			
Welfare gains	W	Е	W + E	W	Е	W+E
Coordinated vs observed (CEV)	-0.07	0.23	0.16	0.07	0.07	0.14
Strategic motive	0.02	0.32	0.34	-0.15	-0.15	-0.30
Consumer surplus	-0.06	-0.06	-0.12	0.00	0.00	0.00
Intertemporal spillovers	-0.03	-0.03	-0.06	0.22	0.22	0.44

All inclusive of transition

Back to extensions

Zero Profit Condition

Back to equilibrium definition

Labour Market Clearing Conditions

Manufacturing labour demand in W

$$\underbrace{\ell^{W}}_{\text{Labour supply in W}} = \underbrace{\left(\frac{\sigma}{\sigma-1}\right)^{-\sigma} a^{W(1-\sigma)} q^{W} \left(\frac{c^{W}\ell^{W}}{\bar{p}^{W(1-\sigma)}} + \frac{c^{E}(1-\ell^{W})}{\bar{p}^{E}(1-\sigma)}\tau^{W(1-\sigma)}\right)}_{+ \underbrace{\ell^{W}\frac{1}{1-\alpha}}{\bar{Q}^{W}(t)^{\phi}L(t)}}$$

$$\underbrace{+ \underbrace{\ell^{W}\frac{1}{1-\alpha}}{\bar{Q}^{W}(t)^{\phi}L(t)}}_{\text{Innovation labour demand in W}}$$
Back to equilibrium definition

Additional Terms in Household Budget Constraint

• Government budget constraint

$$T^{K}(t) = \underbrace{s^{K} w^{K}(t) \int_{0}^{1} L_{R}^{K}(\omega, t)}_{\text{Total expenditure on R&D by firms from } K}$$

• Asset holdings:

$$A^{K}(t) = \int_{\omega^{K}} rac{v^{K}(\omega,t)}{L^{K}(t)} d\omega$$

• Present value of incumbency

$$v^{K}(\omega, t) = \frac{\overbrace{\tau(t) + \underbrace{I^{W}(\omega, t) + I^{E}(\omega, t)}_{\text{Schumpeterian creative destruction}}}^{\text{Period profits}} - \frac{\dot{v}^{K}(\omega, t)}{\tau^{K}(\omega, t)}$$

• Present value of incumbency

$$v^{K}(\omega, t) = \frac{\overbrace{\pi^{K}(\omega, t)}^{\text{Period profits}}}{r(t) + \underbrace{I^{W}(\omega, t) + I^{E}(\omega, t)}_{\text{Schumpeterian creative destruction}} - \frac{\dot{v}^{K}(\omega, t)}{v^{K}(\omega, t)}$$

where

$$I^{K}(\omega, t) = \sum_{\substack{i \\ \text{Over firms } i \text{ in sector}}} I^{K}(\omega, t) \underbrace{= I^{K}(t)}^{\text{By symmetry}}$$

Profits

Preference, production parameters & labour cost

$$\pi^{K}(\omega, t) = \underbrace{\frac{1}{\sigma} \left(\frac{\sigma}{\sigma-1}\right)^{1-\sigma} (a^{K} w^{K}(t))^{1-\sigma}}_{\text{Incumbent's quality}} \underbrace{q(\omega, t)}_{\text{Incumbent's quality}} \left(\underbrace{\frac{c^{K}(t)L^{K}(t)}{P^{K}(t)^{1-\sigma}}}_{\text{Demand from market } K} + \underbrace{\frac{c^{K*}(t)L^{K*}(t)}{P^{K*}(t)^{1-\sigma}} \tau^{1-\sigma}}_{\text{Demand from market } K}\right)$$
Back to equilibrium innovation

Household

• Lifetime utility

Household

• Lifetime utility

where $\sigma > 0$ elasticity of substitution.

Household

• Supply unit labour endowment inelastically.

Budget constraint

Households

• Choose vintage with lowest price per unit of quality: $j^{max}(\omega, t)$.

• Love of variety demand curves

$$d(\omega, t) = \underbrace{q(\omega, t)}_{\text{Quality of } j^{max}(\omega, t)} \underbrace{\overline{p(\omega, t)}^{\text{Price of } j^{max}(\omega, t)}}_{\text{Quality of } j^{max}(\omega, t)} \underbrace{\overline{p(\omega, t)}^{-\sigma}}_{\text{CPI}} \underbrace{\frac{c(t)}{P(t)^{1-\sigma}}}_{\text{CPI}}$$

Households

• Choose vintage with lowest price per unit of quality: $j^{max}(\omega, t)$.

• Love of variety demand curves

$$d(\omega, t) = \underbrace{q(\omega, t)}_{\text{Quality of } j^{max}(\omega, t)} \underbrace{p(\omega, t)^{-\sigma}}_{\text{Quality of } j^{max}(\omega, t)} \underbrace{\frac{c(t)}{P(t)^{1-\sigma}}}_{\text{CPI}}$$

• Consumption Euler equation

$$\frac{\dot{c}(t)}{c(t)} = r(t) - \rho$$

Equilibrium definition

Growth rate

Aggregate growth

$$rac{\dot{Q}(t)}{Q(t)}=(\lambda^{\sigma-1}-1)(I^W(t)+I^E(t))$$

• Semi-endogenous structure implies steady state growth:

$$\frac{\dot{Q}(t)}{Q(t)} = \frac{n}{1-\phi}$$

Equilibrium definition

Moments

-

-

Moments	Data (Model)	Source
East relative wage (w^E)	0.60 (0.61)	Eurostat, 2005-2016
MFP growth rate	0.66% (0.66%)	OECD 2005-2016
Share of sectors, West leadership (ω^W)	91% (91%)	OECD*, 2005-2016
West R&D expenditure/GDP	3.87% (3.04%)	Eurostat, 2015
East R&D expenditure/GDP	2.12% (1.85%)	Eurostat, 2015
West share of labour in R&D	3.13% (3.71%)	Eurostat, 2015
East share of labour in R&D	2.22% (4.33%)	Eurostat, 2015
West innovation elasticity to subsidy	[0.7, 3.5] (1.23)	Akcigit et al. (2018)
East innovation elasticity to subsidy	[0.7, 3.5] (1.60)	Akcigit et al. (2018)

* Analytical Activity of Multinational Enterprises database. Gives output of countries by ownership of firms.

Back to Quantitative

Some Parameters

Calibrated parameters	Value
Innovative R&D productivity parameter, West $(\gamma^{\scriptscriptstyle W})$	0.20
Innovative R&D productivity parameter, East (γ^{E})	0.10
Spillover parameter (β)	0.60
Quality jump size (λ)	1.80
Decreasing returns ($lpha$)	0.20
Spillovers curvature (ϕ)	0.70

Back to Quantitative

Gains from Coordination: Dynamics

