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Abstract

How should regulators price deposit insurance in the face of potential contagion?
We answer this question in the context of a tractable network model of the interbank
market. The model features claims of differing priorities and endogenous fire sales.
We derive expressions for risk premia and isolate the impact of network risk. We
show that the premia increase non-linearly in network risk. We find that network
risk magnifies the gap between the premia of debt and equity. We also uncover a
novel trade-off between aggregate losses and those borne by depositors in the event
of lengthy cascades of defaults.
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1 Introduction

All depositors of [Silicon Valley Bank] will be made whole. No losses associated
with the resolution of Silicon Valley Bank will be borne by taxpayers. Share-
holders and certain unsecured debt holders will not be protected.
(Federal Deposit Insurance Corporation, Monday March 13, 2023)

Assessing the risks hidden in bank balance sheets is imperative. These risks affect
account holders with balances in excess of the maxima guaranteed by deposit insurance
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and in turn, the regulators that set the corresponding policy instruments. Riskiness of a
given bank affects other financial institutions, from which they have been extended credit,
as well as the shareholders with a stake in its profits and central bankers that seek financial
stability. This latter group relies on stress tests, which assess the likelihood of financial
institutions surviving a given scenario for losses on the asset side of their balance sheets.
However, stress tests are inadequate when it comes to the evaluation of ex ante risks. Ex
ante assessments are essential in some contexts, such as the setting of insurance premia
for deposits. In this setting, regulators must consider the joint probability distribution
of all possible shocks, which may impact the balance sheets of banks. An ex ante risk
assessment is an arduous undertaking, by virtue of the connectivity of banks between
each other and additional financial institutions, creating inter-dependence of their future
solvency statuses. As observed by Jackson and Pernoud (2021), any reliable risk assessment
must account for the whole network structure of such financial inter-dependencies.

With full knowledge of the structure of the network of financial obligations, ex ante risk
computation remains an extremely challenging problem.1 These types of risk valuations
require (a) knowledge of the joint distribution of asset value losses across the financial
system and (b) a clearing process for each possible realisation of that distribution. A vast
literature, stemming from Eisenberg and Noe (2001), developed algorithms for clearing a
system subsequent to some initial losses, where all residual banks at the process’ cessation
are solvent. Ex ante assessments are complicated from the perspective that such a clearing
algorithm would need to be repeated for all possible realisations of initial losses. Moreover,
the burden of these computations can be further compounded by uncertainty about the
structure of the network.

In this paper, we ask the question of how the inter-connectedness of the financial system
affects ex ante risk evaluations. We develop a simple model, which retains tractability in
the face of a demanding combinatorial problem, while also capturing essential character-
istics of real financial networks. We show that risk premia are reflective of three different
types of risk — idiosyncratic risk, counter-party risk and network risk. Idiosyncratic risk
emanates from outside the financial network, embodying the risk associated with banks’
investment activities, such as mortgages or business loans. Banks also face risk that their
counter-parties default on their financial obligations, either directly due to their own out-
side investments, or indirectly from failing banks further up the chain. We refer to the
former as counter-party risk and the latter as network risk. This distinction makes evident
that information about one’s own counter-parties, while ignoring the remainder of the net-
work structure, is insufficient to account for all possible scenarios driving bank financial
distress.

1Although financial institutions have a number of instruments at their disposal to insure against risks
(e.g. credit defaults swaps and other derivatives), for various reasons, including that the providers went
bust, these proved inadequate during the 2009 Global Financial Crisis. To keep things simple, we assume
that such insurance opportunities are not available. For example, this could be because it is costly
to verify bank returns; this would also explain why the outside liabilities of banks are debt contracts
and verification is only triggered when the bank becomes insolvent (see, for example, Townsend, 1979).
Moreover, Zawadowski (2013) argues that the pricing of such insturments does not include externalities
arising due to network effects.
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Our model features two essential ingredients for addressing this research question. The
first is claims of differing priority statuses. It is clear that claims of higher priority face
lower ex ante risk, which is reflected in their corresponding risk premia. However, an
important point our analysis highlights, is that network risk widens the gap between the
risk premia of equity and those of claims with higher priority. In so doing, we make a first
contribution in offering network risk as a novel explanation for the equity premium puzzle.
We make a second contribution in formalising the relationship between network risk and
the appropriate risk premia for deposit insurance. When a bank extends a loan, it imposes
a negative externality on the depositors of other institutions. Should the borrower default,
the bank may be unable to honour its own liabilities, putting depositors of banks higher
up the network at risk.

A second crucial ingredient in our model is endogenous fire sales. When a bank has
insufficient liquidity to meet its obligations, it may be able to remain solvent through selling
its illiquid assets. It follows that its survival depends on the market value of these assets.
During crisis times, there may be many banks attempting to offload these assets, in the
face of fewer buyers, as banks’ priorities move towards consolidation rather than expansion.
When the liquidation value of a bank’s assets is too low, it will default, giving rise to the
possibility of distress cascading to counter-parties through the links of the network. Our
model features a liquidation value function that depends on the quantity of illiquid assets
marketed for sale. Accounting for this process can lead to considerable amplification of the
shocks, which caused the initial failures. We make a third contribution in being the first
study to bring endogenous fire sales to a model of ex ante risk assessment. Omitting this
feature downplays the degree of network risk in the inter-bank system, under-stating the
appropriate size of deposit insurance premia. This potentially places excessive pressure on
taxpayer funds, when it comes to financing such a scheme.

We leverage our framework to understand the risk implications of uncertainty regarding
the financial network’s structure. Real networks are not fixed — new links can be formed or
the weight of an existent link may change. These changes can carry profound implications
for both aggregate losses and the distribution of losses across the network. Our fourth
contribution is a counter-intuitive finding that, across network architectures, a novel trade-
off exists between aggregate losses and those incurred by priority stakeholders. In the
context of a cycle network (e.g. a circle of one-way directed links), chains with greater
length potentially lead to longer cascades of defaults. While a shorter chain can limit the
extent of contagion, the sequence of defaults can complete a revolution around the cycle,
eroding cash-flow leftover for distribution to priority claimants. As such, uncertainty about
network structure brings important implications for the risk premia of different liability
classes.

Our starting point is the model in Caballero and Simsek (2013), where all banks are
symmetric and located on a single directed cycle (each bank obtains a loan from exactly
one bank and offers a loan to exactly one bank). We allow for arbitrary distributions of
multiple shocks across the banking system and derive the corresponding risk premia on
deposits, bank loans and equity. This simple model clarifies the complications for ex ante
risk assessment arising from the introduction of priority claims and endogenous fire sales.
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Then, we consider two alternative network structures that capture important features of
real financial networks; namely, multiple directed cycles and hierarchies.2

As Jackson and Pernoud (2021) illustrate, the presence of directed cycles in the financial
network gives rise to the possibility of multiple equilibria. Moreover, as we noted above,
when there are bank liabilities with priority status, the lengths of these cycles are crucial
for the distribution of losses across claimholders. Motivated by this, we consider networks
composed by asymmetric cycles, whose length distributions are arbitrary. As others have
shown, aggregate losses depend on both the distribution of shocks across the system and
the structure of the network. Our work is the first to show how uncertainties regarding
(a) a bank’s position in the network and (b) the structure of the network affect ex ante
risk assessments.

Another important feature of real financial networks is hierarchies. There is consid-
erable heterogeneity in real interbank networks in terms of number of links and more
specifically in the number of creditors and debtors. In order to understand how hierar-
chies affect ex ante risk assessments we also analyze a complete order, which is a network
structure that is strictly hierarchical. Our main finding for this structure is that the risks
borne by various claimholders depend entirely of the position of their bank in the network.
One implication of our analysis is that deposit risk premia should not be uniform across
the banking system but should reflect the position of banks in the network.3

Literature Review4 Our paper contributes to that part of the literature that views
fire sales as an important amplification mechanism of exogenous shocks. In their review
article on fire sales, Shleifer and Vishny (2011) emphasise that ‘because of fire sales, risk
becomes systemic’, (p.30). Their insight is that in financial network models without fire
sales, or other ‘wedges’ such as bankruptcy costs, aggregate losses are simply equal to
those losses incurred by the initial shocks. In that case, the only thing left for the clearing
process to determine is the number of institutions that will be liquidated, where the prices
of assets to be sold are equal to their book values by assumption. However, evidence is
mounting that fire sales played a prominent role in amplifying shocks during the Great
Depression (Mitchener and Richardson, 2019) and during the 2009 Global Financial Crisis
(Adrian and Shin, 2010; Brunnermeier, 2009; Gorton and Metrick, 2012). There is also
evidence on the impact of fire sales in the manufacturing (Benmelech and Bergman, 2009)
and in the housing sector (Campbell et al., 2011). Much theoretical work on fire sales has
been based on models that do not explicitly account for the connections between firms
(Acharya and Shin, 2010; Diamond and Rajan, 2011; Greenwood et al., 2015; Guerrieri
and Shimer, 2014; Kurlat, 2021; Shleifer and Vishny, 1992).

2We have also considered directed cycles with a core-periphery setup. As long as the periphery mainly
consists of small size financial institutions that borrow funds from the core, as in the U.K. financial system
(Adams et al., 2010), our main results still apply.

3Our work formalises policy proposals put forward following the Global Financial Crisis of 2007/08
(see for example Saunders et al. (2009) and Strahan (2013)).

4The literature on contagion in financial networks is vast and there are already a number of review
articles that provide good cover; Allen and Babus (2009), Bougheas and Kirman (2015), Glasserman and
Payton (2016) and Jackson and Pernoud (2022).
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Our work is more closely related to those papers that investigate how fire sales amplify
shocks in networks. A vast literature has followed the work by Eisenberg and Noe (2001),
by developing algorithms for clearing financial networks hit by some initial shocks, under
a variety of suppositions about the transmission of shocks between institutions and the
relationships between balance sheet entries. Many papers introduce liquidation costs,
but assume that these costs, (like those of bankruptcy), are independent of the number
of liquidated institutions (see, for example, Bardoscia et al., 2015; Barucca et al., 2018;
Furfine, 2003; Rogers and Veraart, 2013). Our work belongs to that group of papers where
liquidation costs (fire sales) depend on the supply of assets offered for liquidation.5 We
generalise the parsimonious setup of Caballero and Simsek (2013), allowing for sufficiently
more complex network structures that still allow for the assessment of ex ante balance
sheet risk when there exist liabilities with different priority rights. Amini et al. (2016),
Cifuentes et al. (2005), Feinstein (2017) and Jackson and Pernoud (2022) develop clearing
algorithms for networks with arbitrary structures and endogenous fire sales. However,
none of these papers develop methods for ex ante balance sheet risk assessment and with
the exception of Amini et al. (2016) do not allow for claims that have priority rights.6

Our work is also related to a small group of papers that develop interbank clearing
mechanisms, similar to that in Eisenberg and Noe (2001), then use them to provide ex ante
risk assessments. The models developed differ in the asset valuation functions they employ.
In Veraart (2020) and in Elsinger et al. (2006), there is a common valuation function for
the whole network. In Barucca et al. (2016), each bank does its own evaluation, but
those valuations and the clearing algorithm ensures that the evaluations are consistent
across banks. Glasserman and Young (2015) follow a different approach, by comparing
an interbank network with a financial system consisting of the same number of banks
but without any interbank obligations. They derive upper bounds for the probability of
contagion and also for expected losses due to network effects. These papers allow for
bankruptcy costs, which are independent of the number of liquidated institutions. Our
study goes beyond this approach, by developing a model with endogenous liquidation costs,
which is tractable yet sufficiently rich to allow for interesting comparative statics on the
shock distribution and network structure. In our framework, each round of liquidations in
the clearing algorithm has to go through another round of iterations after an adjustment is
made for the change in liquidation values. We also cover new ground whereby introducing
priority rights we are also able to provide separate ex ante risk assessments for outside
debt, interbank obligations and equity.7

The remainder of this paper is organised as follows. Section 2 details the environment,

5There is another group of papers where liquidation costs are triggered by mark-to-market pricing of
assets when institutions hold over-lapping portfolios (Caccioli et al., 2014; Cont and Schaanning, 2017;
Elliott et al., 2014).

6Acemoglu et al. (2015) in an interbank network and Fisher (2014) in a cross-ownership model also
allow for priority claims.

7There is some evidence from industrial data on the impact of network risk on stock returns. Ahern
(2013) finds that industries that are more centrally located in the network of intersectoral trade earn
relatively higher stock returns. The author argues that such industries are exposed to greater market risk
because they have more vulnerable to sectoral shocks that cascade from one industry to another through
trade links.
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equilibrium and discusses risk for the baseline model with a single directed cycle. We use
this baseline model to develop the tools that we will apply in the subsequent sections,
to more complicated structures that capture real financial networks. Section 3 extends
to arbitrary distributions of cycles. We will demonstrate how the presence of cycles in a
network has important implications for the distribution of risk across those who hold bank
liabilities. Moreover, we will identify the impact that changes in (a) the distribution of
shocks across the network and (b) in the structure of the network have on ex ante risk
evaluations. Section 4 considers the complete order network structure, which will allow us
to study the impact of hierarchies on ex ante risk assessments. Section 5 concludes.

2 Single Cycle Network

2.1 Environment

We build-off the structure of Caballero and Simsek (2013) in considering a network com-
prised of a single directed cycle.

2.1.1 Architecture

There are N ∈ Z banks, denoted by bi, with i ∈ {0, 1, ..., N − 1}. Debt obligations flow
in one direction where bi has borrowed from bi+1 for i ∈ {0, 1, ..., N − 2} and bN−1 has
borrowed from bank b0. Figure 1 gives an graphical example of one such network with
N = 5.

b0

b1
b2

b3

b4

Figure 1: Directed cycle network where N = 5.
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2.1.2 Balance Sheets

For the moment, we follow Caballero and Simsek (2013) and assume that all banks are
symmetric. We will address issues related to network asymmetries in later sections. As
such, we now focus on a representative balance sheet, after the realisation of shocks but
before the settlement of any obligations to depositors and other banks. The status of the
balance sheet will depend on whether the bank was hit by a shock. For a bank, which was
not hit by a shock, the balance sheet is shown in Table 1 below.

Assets Liabilities
Revenues (R) Deposits (F )
Bank Loans (D) Bank Deposits (D)
Non-liquid Assets (K) Equity (E)

Table 1: Balance sheet.

The assets include the revenues from activities outside the network, R, loans offered
to its debtor bank within the network, D, and other non-liquid assets, K. The liabilities
include funding from depositors, F , the value of its obligation to its creditor bank in the
network, D, and the value of its equity, E. Given that all banks are symmetric, the value
of interbank debt, D, is the same on the two sides of the balance sheet. We assume
that in the case of insolvency, depositors have a priority claim to the bank’s assets. A
bank that is not hit by a shock, which also has a solvent creditor bank, is itself solvent:
E = K +R− F > 0. Initially, we introduce the following assumptions:8

Assumption 1: R− F > 0,

Assumption 2: D − F > 0.

Assumption 1 implies that a bank not hit by a shock has enough liquidity to cover its
obligations to depositors. Assumption 2 implies that as long the bank loan is fully repaid,
so will be the depositors. This last assumption is introduced to reduce the number of types
of clearing equilibria. Later, we will show that none of the main conclusions of the paper
depend on any of the above assumptions. We only introduce them at this stage to reduce
the number of cases that we need to consider.

2.1.3 Shocks

We assume that ϕ ∈ Z banks are hit with primitive shocks. These shocks pertain to the
profitability and repayment of loans banks make to debtors outside the interbank network
— to households and firms for instance. We assume, without loss of generality, that a
bank hit by a shock loses all of its revenues. Such a bank will have to sell its tangible
assets in the secondary market. We then denote the probability that ϕ banks are hit by

8In Appendix E we examine the implications for our results of relaxing the main restrictions that we
have imposed on the benchmark case considered in this and the next two sections of the paper.
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these shocks as p(ϕ) for ϕ ∈ {0, 1, ..., N}., where
∑N

ϕ=i p(i) = 1. This distribution is an
object our analysis takes as given, which could be estimated by a policy or institutional
decision maker using historical data.

2.1.4 Fire Sales

Denote the fire sale value of illiquid assets as L ∈ [0, K]. This value will depend on the
price, which these assets are exchanged for in a secondary market. All else equal, one
would expect a larger number of liquidating banks to translate into a lower equilibrium
fire sale value. We can focus on the number of liquidating banks without loss of generality,
since bank symmetry implies the total volume of liquidated assets is proportional this
number. As such, we capture this relationship with a reduced-form liquidation function

L = ℓ
(
N̂
)
, (1)

where N̂ ∈ {0, 1, ..., N} denotes the number of liquidations, ℓ(0) = K, ℓ′ < 0 and ℓ′′ > 0
and ℓ (N) = 0.

2.2 Equilibrium

To introduce the model’s equilibrium in a transparent way, we commence the characteri-
sation in the first subsection by assuming that ϕ = 1 with certainty, (i.e. p(ϕ = 1) = 1 and
p(ϕ) = 0 for ϕ ̸= 1). In the subsection subsequent, we relax this assumption by allowing
for many shocks on the cycle.

2.2.1 Single Shock

The analysis here starts with the assumption that the cycle is sufficiently large, where the
minimum size will be defined in what follows.

Proposition 1 Let δ = R−F+ℓ(N̂)
F

and let v∗ denote the number of additional banks that
are liquidated (that is other than the one initially hit by the shock). Let Int[x] denote the
integer part of a real number x. Then, for a sufficiently large cycle

(a) if δ is an integer v∗ = δ − 1, and

(b) if δ is not an integer v∗ = Int[δ].

Proof. We will first show that v∗ satisfies the Solvency Condition (SC)

v∗R− (v∗ + 1)F + v∗ℓ(N̂) < 0 ⩽ (v∗ + 1)R− (v∗ + 2)F + (v∗ + 1) ℓ(N̂ + 1). (2)

where recall that ℓ(v∗ +1) takes the form in equation (1). We number the N banks of the
cycle, so that the one hit by the shock is bank 0, any bank i (i = 1, .., N − 1) is a creditor
to bank i − 1 and bank 0 is a creditor to bank N − 1. Suppose that the total number of
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banks that have already been liquidated, (including the one hit by the shock), is equal to
λ and consider the status of bank λ + 1. Then the partial repayment of bank λ to bank
λ+ 1 is given by D + (λ− 1)R + λℓ(λ)− λF . Given that depositors hold priority claims
and since bank λ is liquidated, the repayment must be partial. The supposition that the
cycle is large implies that then bank N − 1 will fully repay its loan to bank 1. That is —
since the cycle is large, the cascade ends before reaching bank N − 1.

Given that all banks from bank 0 to bank λ are liquidated, the repayment to bank λ+1
must include all the assets of the liquidated banks. This includes the full repayment from
bank N − 1, all the revenues of the λ− 1 banks not hit by the shock and the liquidation
proceeds of all liquidated banks, minus the compensation received by all depositors with
funds at the liquidated banks. Then, the total liquid assets of bank λ + 1 are equal to
D+λR−λF+λℓ(λ) and its liabilities are equal toD+F . Then, if λR−(λ+1)F+λℓ(λ) < 0,
bank λ+ 1 will be liquidated. We need to then consider two cases:

(a) if λR− (λ+1)F + (λ+1)ℓ(λ+1) ⩾ 0, bank λ+1 will fully repay bank λ+2, and
therefore the number of banks liquidated is equal to λ + 1. Given that λR − (λ + 1)F +
(λ + 1)ℓ(λ + 1) < (λ + 1)R − (λ + 2)F + (λ + 1)ℓ(λ + 1) and letting v∗ = λ we find that
(2) holds.

(b) if λR− (λ+ 1)F + (λ+ 1)ℓ(λ+ 1) < 0, bank λ+ 1 will not fully repay bank λ+ 2.
Repeating the steps above we find that as long as (λ+1)R− (λ+ 2)F +(λ+ 1) ℓ(λ+1) =
(v∗ +1)R− (v∗ + 2)F + (v∗ + 1) ℓ(v∗ +1) ⩾ 0, bank λ+2 will not be liquidated and thus
(2) holds again.

The proof is completed by finding δ ∈ R such that δR− (δ + 1)F + δℓ(δ) = 0.

A point to note here regarding the equilibrium is that its solution represents a fixed
point problem. One can see this most easily from looking at the liquidation function
in equation (1). The fire sale value of the illiquid assets depends upon the number of
defaulting banks. But as discussed in the derivation of equation (2), the number of banks
liquidating itself depends on the fire sale value of their assets.

Condition (2) holds as long as the cycle size is at least v∗ + 1. If the circle has either
exactly v∗+1 banks and the last bank is unable to meet its obligations in full, or it has less
than v∗+1 banks the settlements will depend on both v∗ and the size of the circle. In this
instance, the bank hit by a shock will also need to write-off some of the loan repayment
coming from its debtor bank.

Suppose thatN ⩽ v∗+1 and (N−1)R−NF+Nℓ(N) < 0. This second condition means
that the last bank is liquidated and cannot meet its obligations. It also means that the
value of total assets, excluding the inter-bank obligations, is not sufficiently high to cover
the obligations to all depositors. The depositors of the banks that are not hit by a shock
will be fully compensated. The depositors of the bank hit by the shock will be only partially
compensated. The amount they receive will be equal to (N−1)R−(N−1)F+Nℓ(N) < F .
The next proposition summarises the above results:

Proposition 2 Suppose that a bank belonging to a circle of size m is hit by a shock. Then
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the total number of banks in that circle that will be liquidated, v̂, is given by

v̂ =

{
v∗ + 1
N

for
N > v∗

N ⩽ v∗.
(3)

Although aggregate losses will be higher when N > v∗, all depositors will be repaid in full.
However when N ≤ v∗, depositors of the bank hit by the shock will not be made whole.

This proposition formalises the notion of sufficiently large cycle size: when N > v∗. The
second part of the proposition highlights a novel trade-off between aggregate losses and
those to priority claimants. Although a smaller circle contains the size of a default cascade,
the inability of the debtor bank to that hit by the shock to repay its obligation, diminishes
the cashflow to the shocked bank’s priority stakeholders. The above results for this simple
model suggest that network structure and distribution of shocks are important determi-
nants for the burden of losses across various types of claimholders from some primitive
shock. We explore these issues in more detail in the sections that follow.

2.2.2 Multiple Shocks

Providing a general analysis of this case is a complicated combinatorial problem. For a
given number of shocks, there exists a distribution across banks in the network. As such,
we give a characterisation of the worst case scenario, where the space between each shocked
bank is sufficiently large. Figure 2 gives two examples of shock realisations on a network
with N = 5, ϕ = 2 and v∗ = 1. The left set of realisations in this example can be viewed
as the worst case scenario. The two shocks are spaced-out, meaning the full cascade length
of v∗ = 1 is realised for each shock and total defaults are maximised at four. Given the
implications for taxpayer funds, one can think of the upper-bound of this range as the
appropriate object of analysis for particularly risk averse regulator or investor.

Let bi−s and bi+t denote any two banks hit by a shock. See then that the distance
between these two banks is t + s. Notice that the solvency condition (2) still holds here
in the context of multiple shocks as long as v∗ < s + t. This will imply the liquidation
function will assume the value L = ℓ(ϕ[v∗ + 1]). That is — the total number of defaults
equals the equilibrium cascade size v∗ plus the shocked bank, repeated for each of the ϕ
shocks. The next proposition summaries a consequence for aggregate losses, given that we
consider the worst case scenario.

Lemma 3 If v∗ ⩾ s+ t for any two banks hit by shocks, then N̂ ⩽ ϕ (v∗ + 1).

Proof. See Appendix B.1.

In light of Lemma 3, the range of possible scenarios for aggregate defaults lies some-
where over the range [ϕ + v∗, ϕ(v∗ + 1)]. In the context of the right image in Figure 2, if
two consecutive banks are hit with primitive shocks, the second bank will not necessarily
receive their credits from the inter-bank market in full. In this instance, depositors of this
second bank are less likely to receive their complete repayments, creating actionable issues
for the deposit insurance agency. We now proceed to give a discussion to ex ante risk in
the presence of an arbitrary distribution of shocks.
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b0

b1
b2

b3

b4 b4

b0

b1
b2

b3

Solvent Hit by shock Insolvent from cascade

Figure 2: Directed cycle network where N = 5 and ϕ = 2 and v∗ = 1. Left figure shows
scenario where shocks are spaced-out, right figure shocks scenario with consecutive shocks.

2.3 Risk

The structure of the model is such that, once one has found the equilibrium v∗ as a fixed
point, risk can be characterised in closed-form.

2.3.1 Survival Probability

Here we consider risk in terms of uncertainty regarding the number of primitive shocks to
be realised, within the worst case scenario discussed in the previous subsection. In terms
of balance sheet items, the uncertainty about revenues implies that all balance sheet items
are risky, however, the level of risk varies significantly among them. In addition to the
direct risk related to revenues, a bank faces two additional indirect risks on the assets side
of its balance sheet. The first is related to the ability of its debtor bank to repay its loan
— this depends on whether that bank is caught in the middle of a chain of bankruptcies
— including both counterparty and network risk. The second risk is related to the value
of its illiquid assets, which can drop below its book value due to fire sales. On the liability
side, the commitments of the bank to its creditors are also risky. Depositors face lower
risk given that they hold priority claims. Symmetry implies that the risk on the interbank
loans on either side of the balance sheet bear the same risk. Equity holders, being residual
claimholders, face the highest risk.

As a first step, we calculate the probability that a bank survives. Then we decompose
the implicit risk between direct idiosyncratic risk due to a shock on revenues and indirect
risk due to network effects. Recall that we assume a distribution p(ϕ). Let us now denote
v∗(ϕ) as the number of of additional liquidations taking place in a cascade, when the
number of banks hit by a shock are ϕ and the shocks are sufficiently far apart. We can
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then write the worst case probability of survival (denoted π) for any given bank as

π = p(0) + p(1)max

(
0, 1− v∗(1) + 1

N

)
+ ...+ p(N)max

(
0, 1− N (v∗(N) + 1)

N

)
= p(0) +

∑N

ϕ=1
p(ϕ)max

(
0, 1− ϕ (v∗(ϕ) + 1)

N

)
(4)

where notice the max operator serves to ensure each term is weakly positive, as a proba-
bility. For instance, if there are N shocks, (one per bank), then unless v∗(N) = 0, the term
1−N (v∗(N) + 1)/N will be negative. Notice then that, since the liquidation function (1)
is decreasing in the number of defaults, v∗(ϕ) will be an increasing function. Hence we

can find a cutoff ϕ̂ ∈ Z such that N/ϕ̂ = v∗(ϕ̂) + 1, meaning that for values of ϕ ≥ ϕ̂, the
probability of bank survival is zero. When combined with some further manipulations, we
can re-write equation (4) as

π =

Int(ϕ̂)∑
ϕ=0

p(ϕ)−
Int(ϕ̂)∑
ϕ=1

p(ϕ)
ϕ

N
−

Int(ϕ̂)∑
ϕ=1

p(ϕ)
ϕ

N
−

Int(ϕ̂)∑
ϕ=1

p(ϕ)
ϕ

N
[v∗(ϕ)− 1] (5)

where recall that the operator Int(x) takes the largest integer directly below x ∈ R. Notice
that object ϕ/N represents the number of shocks per bank in the network; alternatively the
probability of being hit by a shock. Equation (5) represents an analytical decomposition
of the three types of risk banks face mentioned in the introduction. The first term on the
right-side is the probability of the circle of being of size less than ϕ̂— this is a requirement
for banks having any chance at survival under the worst case scenario. The second and
third terms on the right-side give the idiosyncratic and counter-party risks. These two
terms are identical — each represents the expected probability of being hit by a primitive
shock — specifically, the risk a given bank or its debtor is hit. The final term gives network
risk — the expected probability of being v∗(ϕ) links away from a bank hit by a shock and
caught in the cascade of defaults that follows.

Expression (5) facilitates closed-form comparative statics on the network. Should one
compare two networks with v∗(ϕ) being the same across all states ϕ, then it’s clear that
the network that places the biggest weight on high values of ϕ will have the lower survival
probability. One should of course bear in mind that v∗(ϕ) is an equilibrium object de-
pending on (2), which needs to be solved for recursively. One can consider two networks G
and G′ — both with the same number of banks N and the same distribution over shocks
p(ϕ) — but different balance sheets. The latter point means that v∗(ϕ) will differ between

G and G′, as will ϕ̂. Consequently, a comparison of survival probabilities depends on the
probability mass below Int(ϕ̂) for each network, as well as the equilibrium cascade size

v∗(ϕ̂).

2.3.2 Risk on Balance Sheet Items

Now having solved for and characterised the probability of survival in equation (5), we are
in a position to evaluate the risk on each of the banks’ claims. Firstly notice that a bank’s
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revenues are guaranteed as long as they are not hit by a primitive shock. As such, we can
define the risk premium on revenues as

ρR =
1

πR

πR = 1−
N∑

ϕ=0

p(ϕ)
ϕ

N
(6)

that is — the reciprocal of the probability of avoiding being hit by a shock. This is equal
to the complement of the expected probability of getting hit by a primitive shock. When
comparing two networks with the same number of banks, that which tilts the probability
distribution towards a higher number of shocks yields a higher premium on revenues.
Object πR gives the probability that a bank does not get hit by a shock. Notice that
this number must necessarily be above that of the bank’s survival due to the presence of
network effects. As such, we can then find the equilibrium probability of a bank failing
due to network effects as the difference of (5) from (6)

πR − π =
N∑

Int(ϕ̂)+1

p(ϕ) +

Int(ϕ̂)∑
ϕ=1

p(ϕ)
ϕ

N
[v∗(ϕ) + 1]−

N∑
ϕ=0

p(ϕ)
ϕ

N
. (7)

The first term on the right-side of equation (7) is the probability of being in a shock
realisation where all banks in the cycle default. The second term is the probability of
either being hit by a shock or caught in a default cascade in a state where there is a
chance of survival. Then the third term is the expected probability of being hit by a
shock. A network featuring a higher degree of potential financial distress, (e.g. where
the liquidation function (1) decays at a faster rate), will generally have longer cascades,
thereby increasing the first two terms in equation (7). We can then define the risk premium
on interbank loans as

ρD =
1

1− (πR − π)
(8)

that is — the reciprocal of the probability of avoiding being caught in a default cascade.
In deriving the premium for equity, we make a simplifying assumption that the last surviv-
ing bank’s equity-holders are fully compensated. We consider this assumption relatively
innocuous from a practical perspective, since the probability of being the last bank in a
cascade is relatively low. Then we can define the equity premium as

ρE =
1

π
(9)

that is — the reciprocal of the probability of survival. Comparing expressions (8) and (9),
one can see that although network risk drives up both premia, ρE > ρD, as a consequence
of priority structure. Our characterisation of the worst case scenario with regard to cascade
chains means that depositors in this solution will always receive their full compensation.
Within this simple model, we have derived closed-form expressions for ex ante risk faced
by various stakeholders in banks. In the following two sections, we now apply this analysis
to two network structures that capture important features of real financial networks.
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3 Multiple Cycle Network

We now move to generalise the discussion of Section 2 to a network with many cycles
of potentially differing sizes. As Jackson and Pernoud (2022) observe, the presence of
directed cycles complicates substantially the analysis of networks. Without such cycles the
network has a hierarchical structure and the clearing process is relatively straightforward.
As we will see below the presence of directed cycles has also important implications for
the distribution of losses following some initial shocks across a bank’s claimholders. In
this section, we abstract form issues related to hierarchies and focus on those pertaining
to directed cycles. In the next section, we take a closer look on the impact of hierarchies
on ex ante risk assessments

3.1 Environment

We retain most features of the single cycle network environment, with substantive depar-
tures detailed in what follows.

3.1.1 Architecture

We index the potential size of a given cycle as m ∈ [2, N ]. The smallest possible cycle has
two banks, which lend to each other, while the largest contains all banks in the network.
We define n(m) as the number of cycles with m banks and N∗ as the total number of
cycles. Two accounting identities then follow

N =
N∑

m=2

mn(m)

N∗ =
N∑

m=2

n(m),

where for N even N∗ ∈ [1, N
2
] and for N odd N∗ ∈ [1, N−1

2
].9 Despite the above restrictions

the number of potential networks of size N is very large and can be calculated recursively.10

Figure 3 gives a graphical example of a simple network with three cycles.

3.1.2 Shocks

Given the degree of complexity in this framework with multiple cycles, we start the analysis
with the following simplifying assumptions.

9For N odd the maximum number of possible cycles is equal to N−1
2 with N−2

2 cycles of size 2 and 1
cycle of size 3.

10See Appendix A for the derivation.
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Figure 3: Network with N = 10, N∗ = 3, n(2) = 1, n(3) = 1, n(5) = 1.

Assumption 3: There is no aggregate uncertainty about initial shocks.11

Therefore, we assume that exactly ϕ < N∗ banks will fail and, thus, the ex ante
probability that a bank will fail is equal to ϕ/N . However, as we will demonstrate below
even if there is no aggregate uncertainty with respect to initial shocks there is still aggregate
uncertainty with respect to final outcomes..

Assumption 4: At most one bank in each circle can be hit by a shock. The probability
that a circle is hit by a shock is independent of its size.

As long as N∗ is much larger relatively to ϕ, this assumption has minimal impact. As
discussed in Section 2, when multiple shocks are allowed to hit a given circle, the degree of
amplification can increase. As long as the worst case scenario holds for a multi-shock circle,
(where the full default cascade is realised), our results of this section remain unchanged.

3.1.3 Fire Sales

We maintain the assumption that the liquidation values of assets are given as in expression
(1). However we emphasise that this value is not cycle-specific. That is — the same
liquidation value for assets applies to banks in financial distress in any cycle.

3.2 Equilibrium

The results of Proposition 1 and Proposition 2 continue to hold in the model presented
in this section. In computing the equilibrium, the fixed point problem must account for
liquidations across the entire network, rather than in a particular cycle. The effect of

11As we did in Section 2, it is straightforward (although computationally more demanding) to extend
the analysis to the case when there is aggregate uncertainty. Under aggregate uncertainty, the number of
shocks ϕ is a discrete random variable that can take any integer value in the interval [0,m] wherem is circle
size. By repeating the analysis below for all possible values, multiplying the results for each value with
its corresponding relative frequency and summing up we can obtain the corresponding expected values.
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the ϕ shocks, on the the total number of insolvencies depends on (a) the structure of the
network, that is its partition into circles, and (b) the distribution of shocks across these
circles. Let n̂(m) denote the number of circles of size m that were hit by a shock and let
N̂ denote the total number of banks in the economy that will be liquidated. Notice that∑N

m=2 n̂(m) = ϕ. Then, the total number of banks in the economy that will be liquidated
is given by

N̂ =
v∗∑

m=2

mn̂(m) + (v∗ + 1)
N∑

m=v∗+1

n̂(m) ≡ Ψ(v∗) . (10)

Notice that v∗ is non-increasing in liquidation values. As liquidation values drop the
number of banks being liquidated either stays the same or goes up. In the second case the
right-hand side of (10) increases as all banks of even bigger circles get liquidated. Since
our model features endogenous fire sales, the right-side of (10) is also a function of N̂ ,

denoted as ψ
(
N̂
)
, given that v∗ depends on the liquidation value of assets. Thus, the

number of banks that will be liquidated in equilibrium, N̂∗, is given by the fixed points of

N̂ = ψ
(
N̂
)
= Ψ

(
V
(
ℓ
(
N̂
)))

(11)

where the last expression recognises that changes in N̂ will directly affect liquidation values
through (1), which in turn will affect v∗ through V (L), a step-function that can be derived

using the solvency condition (2), which in turn will affect ψ
(
N̂
)
through Ψ (v∗). We defer

more details regarding this structure’s solution to Appendix C. We also consider extensions
to this network structure in Appendix E.

3.3 Risk

Here we assume that the network structure is known, but a particular bank’s position
within the network is not known (i.e. the size of its corresponding circle). For an individual
bank, they will likely have detailed information regarding their counter-parties, but it is
unlikely they can see information about banks further up the chain. In Appendix E.4, we
also consider the simpler case where the bank knows the size of its cycle.

3.3.1 Survival Probability

In what follows, we characterise the probability of survival for cascade lengths no more
than 3 banks (v∗ ≤ 3). The solution can easily be extended to chains of greater length,
but the number of cases that must be counted significantly rises.

As mentioned previously, in sufficiently large cycles hit by a shock, the last surviving
bank will only be partially compensated. Similarly to the single cycle model, we will
approximate the solution where the last surviving bank is fully compensated. In Appendix
E, we extend the model method to allow for such partial repayments and show that they
indeed have minimal impact on our results.
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In this version of the model with multiple cycles, there are several states of the world,
which are indistinguishable in terms of final outcomes. Here we leverage this point to
simplify the construction of the solution. What matters is how many of the ϕ shocks hit
cycles of a given size, not which particular cycles were hit. We let µ denote the number of
distinct circle sizes. In what follows, we index states of the world, (in terms of the cycles
hit by shocks), by s.

Lower liquidation values materialise when shocks hit larger circles, leading to more
bank failures and higher values of v∗s . As such, given that circles have at least two banks,
if v∗s = 0 or v∗s = 1 for some s, then v∗s = 0 or v∗s = 1, respectively in every s. This follows
since the highest possible number of liquidations is either 1 (for v∗s = 0) or 2 (for v∗s = 1)
for every circle hit by a shock, bringing the total number of liquidations to either ϕ or 2ϕ,
respectively. That is, the total number of liquidations does not depend on the distribution
of shocks. In contrast, at higher values, v∗s can vary from state to state, since the number
of banks liquidated and therefore the size of fire sales, will depend on the distribution of
shocks.12

Now we break-down the approximate solution for v∗s ≤ 3 into two parts. First we
consider the set of scenarios whereby v∗s = v∗ ∀s, meaning that the default cascade length
does not very by state. As stated above, in the cases of v∗ ∈ {0, 1}, this holds by design.
This may not always be true for v∗s ∈ {2, 3}, but in cases where parameters imply that it
is, we can write the survival probability as

π =

(
1− ϕ

N∗

)
+

ϕ

N∗

(
N∑

m=v∗+2

(
mn(m)

N

m− [v∗ + 1]

m

))
(12)

for v∗ ∈ {0, 1, 2, 3}. The first term in expression (12) is the probability a cycle is not hit
by a primitive shock. The second term states that, conditional on being hit by a shock,
one must consider all the possible cycle sizes, ranging from v∗+2 through N . This follows
since smaller cycle sizes see all banks eliminated in the event of a shock, (see Proposition
2). Inside the summation in (12), one considers the probability of being inside a cycle of
a given size m, mn(m)/N and the probability of surviving conditional on being in such a
cycle, [m− (v∗ + 1)]/m.

We now consider scenarios whereby v∗s is not a constant for all possible states s. Given
our focus on cascades less than 3 in length, the case we need to consider is parameterisations
that lead to states with v∗s ∈ {2, 3}, varying with s. We denote the total number of
composite states for the network by s̄. Given that the liquidation function (1) is decreasing
in the total number of liquidations, there exists a state say γ, such that for all s < γ, v∗s = 3
and for all s ⩾ γ, v∗s = 2 (if one orders states in descending order of total liquidations).
The probability of survival can then be written as

π =

(
1− ϕ

N∗

)
+

ϕ

N∗

(
γ∑

s=0

ps

N∑
m=5

(
mn(m)

N

m− 4

m

)
+

s̄∑
s=γ+1

ps

N∑
m=4

(
mn(m)

N

m− 3

m

))
(13)

12Appendix D gives some examples of how one would go about enumerating the set of states to be
considered.
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where ps = SI/
(
N∗

ϕ

)
, that is equal to the number of indistinguishable states divided by

the total number of states. The first double summation in the second bracket of equation
(13) captures the likelihood of surviving given that the circle is hit by a shock and v∗s = 3,
while the second is for v∗s = 2. When v∗s = 3 all banks in circles of size less than or equal
to 4 are liquidated. Thus, to survive a bank must belong to a circle of size greater than or
equal to 5 and at a distance of at least 4 from the bank hit by the shock. When v∗s = 2 all
banks in circles of size less of equal to 3 are liquidated. To survive, a bank must belong
to a circle of size greater or equal to 4 and at a distance of at least 3 from the bank hit
by the shock. Taken together, (12) and (13) summarise the approximate solution for the
probability of survival when v∗s ≤ 3.

The parsimonious structure of our model and the simple expressions for survival prob-
abilities, facilitate closed-form comparative statics on network architecture. The following
proposition gives an expression showing how the approximate survival probabilities vary
as the distribution of cycles changes.

Proposition 4 (Comparative statics on architecture). Consider two networks G and G′,
which have the same number of banks N and shocks ϕ, but different architectures (configu-
rations of cycles). Specifically, G and G’ have different distributions of cycles {n(m)}Nm=2

and {n′(m)}Nm=2, respectively. Assume that the equilibrium cascade length is the same
1 ≤ v∗ ≤ 3, for all possible states across G and G′. The difference in survival probabilities
∆ ≡ π(G′)− π(G) is given by

∆ =
ϕ

N

v∗+1∑
m=2

(m− [v∗ + 1])

(
n(m)

N∗ − n′(m)

N∗′

)
(14)

Proof. See Appendix B.2.

The expression on the right-side of (14) is the difference in network risk across G′ and
G. Notice that if v∗ = 0, then the object ∆ = 0, given that banks are only faced with
idiosyncratic risk. Recall the term ϕ/N gives the number of shocks per bank. The sum
spans the region of cycle sizes, whereby all banks in a circle hit will default. Notice that
any cycle hit in either network with size v∗+2 or above will give the same outcome in terms
of number of defaults and hence the contribution to the survival probability. The last term
in parentheses gives the difference in the fraction of cycles of size m across networks G
and G′. When there are more cycles of smaller size in network G, cascade lengths are
constrained relative to G′, leading to a higher likelihood of any given bank surviving, from
an ex-ante viewpoint. We now turn to study the impact of network risk on balance sheet
items.

3.3.2 Risk on Balance Sheet Items and Deposit Insurance

In the context of this model with multiple cycles, notice that we can write the risk premium
on revenues as in (6), but with probability

πR = 1− ϕ

N
.
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Similarly to section 2.3.2, we can then find the probability of bank failure due to network
effects, in the case where vs = v∗ ≤ 3 ∀s as

πR − π =
ϕ

N∗

N∑
m=v∗+2

mn(m)

N

(
1− 1

m
− v∗

m

)
,

where we’ve invoked expression (12). See that the subtracted term 1/m inside the sum-
mation reflects counter-party risk, while v∗/m reflects network risk. Similarly, when con-
sidering cascades varying by state v∗s ∈ {2, 3}, we can write this network effect using (13)
as

πR − π =
ϕ

N∗

(
γ∑

s=0

ps

N∑
m=5

(
mn(m)

N

[
1− 1

m
− 3

m

])
+

s̄∑
s=γ+1

ps

N∑
m=4

(
mn(m)

N

[
1− 1

m
− 2

m

]))
where the terms carry similar meaning to the previous expression. One can then use these
expressions for πR − π with (8) in order to find the risk premium on inter-bank liabilities.
Similarly we can use expressions (12) and (13) with (9) to get the premium on equity.

Recall in Section 2, we assumed that with multiple shocks, they were spaced-out suf-
ficiently to allow full cascade chains to be realised. This marks the substantial point of
departure when considering single shocks on many possible cycles. In the current context,
we can make statements about risk to the depositors, since potential exists for those of
shocked banks to lose funds in the event of a full cycle revolution. Recall, this happens
specifically when m ≤ v∗ + 1, (Proposition 2). We can derive an upper bound for the risk
premium of deposits that corresponds to the case where the depositors of banks hit by
shocks do not receive any compensation. This assumption simplifies the manipulations,
while also giving a conservative estimate, which is an important object from a regulatory
perspective. We can write this expression for the upper-bound on the premium as

ρF ≤ 1

πF

(15)

where the expression for πF depends on how v∗s varies across states s. When the cascade
length is the same for all states v∗s = v∗ ∈ {1, 2, 3}, we can write this as

πF =

(
1− ϕ

N∗

)
+

ϕ

N∗

{
v∗+1∑
m=2

mn(m)

N

m− 1

m
+

N∑
m=v∗+2

mn(m)

N

}
. (16)

That is — depositors receive full funds when their cycle is not hit by a shock — the first
term in (16). The first summation says, conditional on their cycle being hit, they receive
full funds if they are not the bank hit by the shock in a small cycle (2 ≤ m ≤ v∗ + 1),
which happens with probability (m−1)/m. The second summation says they receive their
full stake also if they’re cycle is shocked but is of a sufficiently large size (m ≥ v∗ + 2). In
the case where v∗s ∈ {2, 3} for a given network, we can write

πF =

(
1− ϕ

N∗

)
+

ϕ

N∗


γ∑

s=0

ps

(
N∑

m=5

mn(m)
N

+
4∑

m=2

mn(m)
N

m−1
m

)
+

s̄∑
s=γ+1

ps

(
N∑

m=4

mn(m)
N

+
3∑

m=2

mn(m)
N

m−1
m

)
 . (17)
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Looking firstly at the double summations inside the parentheses of (17). The first set of
double summations considers when v∗s = 3 (s ≤ γ) — the depositors receive full funds if in
a circle bigger than size 5 or if they’re not the shocked bank in sizes 2, 3 or 4. The second
set follows the same logic for v∗s = 2 (s > γ) states.

Taken together, (15), (16) and (17) characterise the ex-ante risk premium associated
with deposits in the network. It is almost immediate to see how this probability varies
across different networks. For instance, in (16), one can see that the distribution of banks

across small cycles relative to large is crucial, summarised by
∑N

m=v∗+2
mn(m)

N
. A skew of

the distribution towards smaller cycles 2 ≤ m ≤ v∗ + 1 shifts weight towards scenarios
whereby depositors lose funds due to full cycle revolutions of cascades.

The above analysis highlights the sensitivity of ex ante risk assessments to the structure
of the financial network. In particular, the structure of the network affects the distribution
of expected losses across different types of claimholders, classified by their priority status.
This has important implications (a) for the design of deposit insurance premia, and (b)
for the cascade of bank failures across the system.

3.3.3 Equity Premium Puzzle

Around four decades ago, Mehra and Prescott (1985) observed that the risk premium on
U.S. equities exceeds by an order of magnitude what should be expected for the premium
to be from neo-classical finance. The article planted the seeds for an extensive literature
offering various solutions to the puzzle.13 In our model, risk premia respond to two sources
of risk. One is common idiosyncratic risk, capturing any risk arising within an entity (in
our case revenues from loans granted to housolds and banks). The second type of risk is
due to network effects arising because of potential losses resulting from the liquidation of
other entities belonging to the same network. While all liability holders are exposed to
this second type of risk, those who hold priority claims are less exposed.

In our model, the gross equity risk premium in the absence of cascades is given by
the premium due to idiosyncratic shocks, ρR. The corresponding risk premium on prior-
ity claims is equal to 1 (in the absence of cascades these claims are fully repaid). The
corresponding overall risk premia that also include the risk due to cascades are given by
ρE and ρF . The latter, especially if we allow for partial repayments, is very close to 1.
In contrast, ρE is significantly higher than ρR. Thus, the difference between equity and
priority claims, the risk premium, increases when we account for a premium for systemic
risk. We now illustrate these effects through a numerical example.

Example 1 Consider a network with 100 banks and structure described in Table 2. The
balance sheet parameters are: R = 1, F = 0.95, K = 0.25, D = 0.8, and ϕ = 3. The

liquidation function is given by ℓ
(
N̂
)
= K

(
1−

√
N̂
N

)
. The results are shown in Figure

3 where we compare the number of liquidations for alternative network structures. Thus,
each line shows for each network structure the distribution of liquidations across all states

13For a useful review the reader is referred to Mehra (2006).
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of nature. The total number of states for this example are equal to
(
N∗

ϕ

)
=
(
27
3

)
= 2, 925.

For these parameter values v∗ = 4.

Size E1A E1A E1B E1C
2 6 0 0 0
3 8 12 0 0
4 7 7 16 0
5 3 3 3 3
6 1 1 1 1
7 1 1 1 1
8 1 1 1 9
πR 0.970 0.970 0.970 0.970
π 0.896 0.887 0.872 0.850
πF 0.973 0.974 0.974 0.994
ρR 1.031 1.031 1.031 1.031
ρD 1.080 1.090 1.109 1.136
ρE 1.117 1.127 1.147 1.176
ρF 1.027 1.027 1.026 1.006

Table 2: Network for Example (E) 1 and variant examples. The network configuration
changes progressively with Example 1A (E1A), 1B (E1B) and 1C (E1C). Numbers in the
top panel pertain to the distributions of cycles. Numbers in the bottom panel give the
calculated survival probabilities and risk premia the configurations, shocks and balance
sheets imply.

Here we run an experiment where we start with Example 1’s network structure and
then progressively re-allocate the banks from the smallest cycles to larger ones. Initially
we break-up the cycles of size 2 and re-distribute the displaced banks into cycles of size 3
— reflected in Example 1A. We then do the same with the circles of 3s in Example 1B,
then finally with 4s in Example 1C. Note that the 4 circles can be re-distributed in anyway
in moving to Example 1C, since all states are indistinguishable due to the v∗ = 4 cascade
length.

Figure 4 depicts the distributions of aggregate losses for the examples. As we change
the network structure, distributions that first-order dominate have a higher number of
average liquidations. For the network of Example 1, we find that the lower number of
liquidations, 6, is obtained when all shocks hit cycle of size 2 and the higher number of
liquidations, 15, is obtained when all shocks hit cycle of sizes greater or equal to 5. When
all shocks hit cycles of size 2, the total number of liquidations cannot exceed 6. As we
move to states of nature where shocks hit larger cycles, liquidations increase. Then as we
move to Example 1A, we we find that the lower number of liquidations is equal to 9 while
the higher number is still 15. The key observation is that as the distribution of cycle sizes
moves to the right so does the distribution of liquidations across the states of nature. The
distribution continues to shift rightwards as we move from Example 1A to Example 1B.
Finally for Example 1C, again since v∗ = 4, it does not matter which cycles are hit by
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shocks. Independent of cycle size, there are 5 liquidations in each one of those cycles. For
the same reason, further shifts of the distribution of cycle sizes will not affect the number
of liquidations.
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Figure 4: Distribution of aggregate defaults for Example 1 and re-configurations.

Table 2 also presents probabilities of survival as well as implied risk premia. Notice the
non-linearities in these numbers as the removed circles increase in size. The probability
of survival π decreases at an increasing rate, falling by 0.9% as the 2s are removed, 1.5%
as the 3s are removed and 2.2% as the 4s are removed. This translates into an equity risk
premium that increases at an increasing rate — rising by 1%, 2% and nearly 3% when
removing the 2s, 3s and 4s respectively. Notice also that the conservative premium on
deposits decreases as one shifts the distribution of losses to the right, with the premium in
Example 1C being slightly above unity due to approximation error. After having focused
on cycle networks until now, we now move to study the implications for ex-ante risk of
hierarchies by analysing a network structure known as ‘complete order’.

4 Complete Order Network

In the last section, we showed that the presence of directed cycles in the financial network
has significant implications for the distribution of expected losses across various bank
claimholders. In order to keep the analysis tractable, we have abstracted from issues
arising as a result of hierarchies in the network. There are some banks that occupy central
locations in the network by providing funds to many other banks, while there are also
banks with many creditors. Under such hierarchical systems, it is clear that the risks that
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Figure 5: Complete order network with N = 5.

depositors face depend on the position of their bank in the network. In order to obtain
a better understanding for the implications that such hierarchies have, not only for the
stability of the financial system, but also for regulators who are interested in protecting
depositors, we turn now our focus to a network that is strictly hierarchical.

4.1 Environment

Here we outline the points of departure from the model of Section 2.

4.1.1 Architecture

In this section, we adopt stricter notation in labelling banks. We index the number of
creditors one institution has with integer c ∈ {0, 1, ..., N − 1}; a bank is identified with
bc. There complete asymmetry — we assume that for each possible value of c, there is
associated exactly one bank. Figure 5 displays an example structure with N = 5. The
bank at the top b4 has four creditors and zero debtors, while bank b0 has four debtors and
zero creditors.

4.1.2 Balance Sheets

Assets Liabilities
Revenues (Rc) Deposits (F )
Bank Loans ([N − c− 1]D) Bank Deposits (cD)
Non-liquid Assets (K) Equity (E)

Table 3: Balance sheet for bank bc.
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The balance sheet of bank bc is presented in Table 3. Notice that the value of revenues
Rc is asymmetric across banks. Bank 0 has interbank loans as assets in the amount of
(N−1)D and liabilities of 0. In contrast, bank bN−1 has interbank assets of 0 and liabilities
of (N − 1)D. All other banks are on a scale in between these two extremes. We assume
multiplicity of the factor D in order to simplify the algebra. One should also notice that,
due to common elements F,K,E across banks, it must also follow that

Rc −Rc−1 = 2D (18)

when comparing the balance sheets of banks c and c − 1. That is — revenues must be
increasing as one moves up the chain in considering banks with higher amounts of interbank
liabilities.

4.1.3 Shocks

Similarly to Section 2, to keep the analysis tractable in terms of cases, we assume a single
shock, that can hit any bank in the network. Each bank is assumed an equal probability
1/N of being the recipient. In the event of being hit by a shock, bank bc’s revenues are
reduced to zero. One other point to emphasise: given the asymmetry of balance sheets, it
is possible for a bank hit by a shock here to stay solvent. This contrasts with the networks
of Sections 2 and 3, where cancellation of the D interbank assets and liabilities means,
with certainty, that the bank hit with the shock will default.

4.2 Equilibrium

The following proposition exploits the ordering structure of the network, to make transitive
statements regarding liquidations and solvency.

Proposition 5 Suppose that Rj → 0 and bj is liquidated. Then if Rk → 0 and k > j, bk
will be liquidated. Conversely, if Rm → 0 and bk for some k < m is not liquidated then
bank bk−1 will also not be liquidated.

Proof. See Appendix B.3.

Proposition 5 allows us to limit the number of banks that we need to directly consider,
when it comes to characterising equilibrium cascade lengths. The following proposition
summarises the equilibrium solvency condition, which goes in place of (2) for this particular
network structure.

Proposition 6 The equilibrium cascade length when bank c is hit by a shock, v∗c , is char-
acterised by solvency condition

Rc−v∗c + (N − 2c+ 2[v∗c − 1])D +

v∗c+1∑
s=0

Dc−s(ℓ(v
∗
c + 1))− F < 0 ≤

Rc−v∗c−1 + (N − 2c+ 2[v∗c ])D +

v∗c+2∑
s=0

Dc−s(ℓ(v
∗
c + 1))− F
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where

Dc−s(ℓ(v
∗
c + 1)) =

max
(
0,
∑v∗c−1

j=1 Rc−j + (N − c− 1)D +
∑v∗c−1

j=0 Dc−j(ℓ(v
∗
c + 1)) + ℓ(v∗c + 1)− F

)
c− s

Proof. See Appendix B.4.

There are several points to notice in Proposition 6. First, see that the equilibrium
cascade length in this model becomes bank-specific. The object Dc−s is the repayment
of bank c − s to each of its individual creditors. The payment Dc−s is an accumulation
of revenues of previous defaulters, excepting that hit by the shock, its own interbank
assets, previous partial payments from defaulters, its liquidation value less its obligation
to depositors. The following proposition shows that cascades of defaults are increasing in
length as one moves up the chain towards banks that have more creditors.

Proposition 7 Inequality v∗k ⩾ v∗j holds ∀k > j.

Proof. See Appendix B.5.

4.3 Risk

We assume that banks know the structure of the entire network. As such, given their own
interbank assets and liabilities, they can exactly identify their position within the network.

4.3.1 Survival Probability

Since the survival probability is position-specific, we denote it by πc for a bank with c
creditors

πc =
1

N
1[(N−c−1)D≥F+cD] +

c−1∑
s=0

1

N
+

N∑
s=c+1

1

N
1[v∗s<(s−c)] (19)

where note that 1[x] represents an indicator, which equals 1 when argument x is true
and 0 otherwise. The first term on the right-side of expression (19) relates to bank c’s
idiosyncratic risk. Should the interbank repayments it receives be insufficient to cover its
liabilities, in the absence of revenues, it will fail. The second term captures the probability
of the shock hitting a bank with fewer creditors than c. When a bank further down the
chain is hit, it has no bearing on banks at the top of the chain since debts run downwards,
not upwards. The final term in (19) relates to network risk. There is a 1/N chance of each
bank s above c in the ordering being hit by the shock; bank c will feel the effect of that if
the equilibrium cascade size is at least as long as the distance from c.

Proposition 8 (Comparative statics on position). Consider two distinct banks c and c′.
Assume without loss of generality that c′ > c. The difference in survival probabilities
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∆′ = πc − πc′ is given by

∆′ =
1

N
I +

{
c′∑

s=c+1

1

N
1[v∗s<(s−c)] −

c′−1∑
s=c

1

N
+

N∑
s=c′+1

1

N

{
1[v∗s<(s−c)] − 1[v∗s<(s−c′)]

}}
(20)

where I = 1[(N−c−1)D≥F+cD] − 1[(N−c′−1)D≥F+c′D].

Proof. See Appendix B.6.

The expression for ∆′ in (20) is comprised of two sets of terms. The first set is made-up
of the first term I/N , which is the difference in idiosyncratic risk across c and c′. Object I
is an integer defined as the difference in the indicators for solvency of c and c′ in the event
of being hit by the primitive shock. As a consequence of Proposition 5, it must be the case
that I is a binary variable, assuming value 0 if both banks survive or both fail in the event
of receiving the shock, or value 1 if c survives while c′ fails. The second set of terms, inside
the curly parentheses, represents the difference in network risk across the two positions.
Network risk is broken-down into three components. The first component, (second term
in (20), gives the chance of survival for bank c is any bank between itself and bank c′ is
hit by the shock. The second term is the safety afforded to bank c′ by being higher up the
chain of obligations. The final term gives the incremental survival probability for c when
any bank above c′ is hit by a shock. See that by Lemma 7, it must be that this last term
is weakly positive. We next consider changes in architecture.

Proposition 9 (Comparative statics on architecture). Consider two networks G and G′,
with N +1 banks and N banks, respectively. All other details are identical. The difference
in survival probabilities for a given position c, denoted as ∆̂ = πc(G)− πc(G′) is given as

∆̂ =
1

N
I ′ +

c−1∑
s=0

[
1

N + 1
− 1

N

]
+

N∑
s=c+1

[
1

N + 1
− 1

N

]
1[v∗s<(s−c)] +

1

N + 1
1[v∗N+1<N+1−c]

(21)

where

I ′ =
N

N + 1
1[(N−c)D≥F+cD] − 1[(N−c−1)D≥F+cD].

Proof. See Appendix B.7.

Notice that adding more banks to the network for a fixed position, as in Proposition
9, amounts to adding more banks at the top of the network; more banks with greater
interbank obligations than bank c. The first term on the right-side of (21) represents the
chance of being hit by a shock and failing. Note that in network G′, bank c has one extra
debtor, meaning default in the event of a shock becomes weakly less likely. However, the
chance of being hit by the shock becomes lower. The second term gives the difference
in the probability of a shock below position c in the chain. The third is the difference
in survival probability when a shock hits above position c and the last covers the extra
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contingency for survival for the additional bank added at the top of the network (with
N + 1 creditors).

Lastly, one can also see how changes in balance sheets, holding position constant,
affect survival probabilities immediately by looking at the last term in (19). For instance,
consider an increase in the parameter F . The difference in survival probability between
two networks, G and G′ (higher F ) would be

∑N
s=c+1

1
N
{1[v∗s<(s−c)] − 1[v∗′s <(s−c)]}, where

the first term pertains to G and the second to G′. The effect of such a change is highly
non-linear and highlights the role of bank heterogeneity in this network structure. The
change in F may affect the equilibrium cascade length of some banks but not others; the
difference 1[v∗s<(s−c)] − 1[v∗′s <(s−c)] may be zero or negative and varies with s.

4.3.2 Risk on Balance Sheet Items and Deposit Insurance

Risk on revenues can simply be written as ρR = 1/πR where πR = (N − 1)/N in this
context. We can then find the probability of failing due to network effects as

πR − πc =
N − 1− c− 1[(N−c−1)D≥F+cD]

N
−

N∑
s=c+1

1

N
1[v∗s<(s−c)]. (22)

The first term on the right-side of equation (22) shows the probability of network failure
falls in c, since banks hit below are not along the chain of c’s creditors. The probability
is also falling in the second term — as cascades starting at s get shorter, the chance of
reaching c drops. We again use this expression (22) in (8) in deriving the risk on interbank
liabilities, as well as the expression (19) in (9) for the risk on equity.

We can price deposit insurance in terms of the expected losses to the corresponding
stakeholders. The depositors of a bank s ≥ 0 positions below that hit by a shock receive
cash flows

Fc−s = min

(
F,Rc−s1c−s ̸=0 + (N − c− 1)D +

s−1∑
j=0

Dc−j(ℓ(v
∗
c + 1)) + ℓ(v∗c + 1)

)
. (23)

That is — they receive F if the bank is solvent or has sufficient cashflows post-liquidation.
Otherwise they receive their bank’s revenues, payments in full from solvent debtor banks,
partial payments from insolvent debtor banks and the firesale value of the bank’s illiquid
assets. Using equation (23), in addition to the setup for shocks, we can write the expected
losses for a depositor of the bank in position c as

F̂c = F − 1

N
Fc −

cF

N
− 1

N

N∑
s=c+1

{
1v∗s<(s−c)F + 1v∗s≥(s−c)Fc−s

}
,

which is simply the difference between the face value and the expected repayment. The
second term in F̂c is the repayment if bank c is hit, the third term shows the full face value
is repaid when banks below bank c are hit and the final term relates to the contingencies
of banks above c being hit.
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What is clear from this expression for F̂c is that the expected losses to depositors are
highly contingent on position. Moreover the effect of moving along the hierarchy has an
ambiguous effect on F̂c. Although bank N − 1 faces no network risk, it stands to lose
the most revenues if hit by the primitive shock, which catalyses the largest cascade effect
(Proposition 7). In a relatively small network (low N) with a rapidly decreasing liquidation
function (1), it is possible that bank N − 1 could face higher expected losses than those
with fewer creditors. As Acemoglu et al. (2015) observe having more creditors introduces
a diversification effect as losses are spread out to many counterparties. However, if initial
losses are very large this also raises the possibility of a higher number of bank failures.14

Our analysis in this section suggests that the risks faced by depositors depend on the
position of their bank in the interbank network. In our network, all banks have the same
number of links but there are stark differences between them in terms of the nature of
these links. Focusing at the the two banks at the extreme ends of the network we make
the following observations. Depositors at bank N − 1 are not exposed to risks associated
with the performance of other banks. However, their bank’s performance could affect all
the others, as well as their depositors. In contrast, depositors at bank 0 can potentially be
affected by the failure of any bank in the system. This raises some questions about deposit
insurance risk premia. A bank’s decision to participate in the interbank network affects the
riskiness of its liabilities, not only through risks directly related to its counterparties, but
also those related to the structure of the whole network. As Zawadowski (2013) observes,
when banks hedge their portfolios, they do not take into account the negative externalities
that their actions exert on the rest of the banking network. Here, we make an analogous
argument in relation to deposit insurance.15

5 Concluding Comments

Contagion risk poses a serious threat to worldwide financial stability, as shown in the
Global Financial Crisis of 2007/08 and more recently with the 2023 United States/European
banking crisis. These types of events place significant strain on public funds and must be
priced accurately by regulators in advance. This paper contributes to the literature through
being to first to formalise the relationship between ex ante assessments and network risk.

We presented two different network structures, which capture features of real networks,
yet are sufficiently simple to retain tractability. Our model facilitates closed-form risk
premia expressions, as well as yielding analytical comparative statics. Our results show
that risk is a highly non-linear object, which which can not be accurately estimated when
abstracting from network effects. A counter-intuitive headline result is that lower aggregate
losses can come in tandem with higher losses for priority claimholders.

Given that our framework is stylised, it has some limitations. Firstly, our model uses a

14For a more extensive discussion of diversification in financial networks, see Battiston et al. (2012).
15In this work we have concentrated on risks due to default. However, there is an alternative network

risk due to lending freezes resulting from a loss of confidence in the market. In that case bank 0 could
potentially be the one affecting all other banks, through reluctance to renew its lending contracts. See
Acemoglu et al. (2021) for a network analysis of bank freezes.
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financial equilibrium approach, where we have taken balance sheets and hence the network
structure as fixed. While this methodology can be useful for a regulator who would like
to know the underlying risks of a networked system, it might not be entirely appropriate
for the design of policies. As Beale et al. (2011) stress, regulators also need to take
into consideration how a new policy might alter the incentives of participants to form
links.16 A future potential application could be to understanding risk across international
networks with multinational banks.17 Financial system turbulence is an issue that affects
all entities in a developed economy — from workers to entrepreneurs and to CEOs of
global corporations. It is hoped that this paper’s first step towards understanding the
relationship between network and balance sheet risk will spur much more such research
activity to come.
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Appendix

A Network Space

Note that this is a modified version of the procedure described in https://janmr.com/

blog/2008/12/twelve-ways-of-counting/ We begin by calculating the number of pos-
sible networks for a given number of circles, N∗. This problem is equivalent to finding the
number of ways of allocating N unlabeled balls into N∗ unlabeled urns. The allocation
problem is equivalent to the number of ways of writing the integer N as the sum of N∗

positive integers each integer greater or equal to 2. The problem reduces to finding the
number of ways of allocating N −N∗ balls into N∗ urns and then add 1 ball in each urn.
The arrangements we get before we add the extra balls are called partitions of N − N∗

into N∗ parts. Let ∣∣∣∣ N −N∗

N∗

∣∣∣∣
denote the number of partitions. We have∣∣∣∣ αα

∣∣∣∣ = ∣∣∣∣ α1
∣∣∣∣ = 1, α ⩾ 1 and

∣∣∣∣ βα
∣∣∣∣ = 0, α > β > 0,
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and the boundary conditions ∣∣∣∣ 00
∣∣∣∣ = 1 and

∣∣∣∣ α0
∣∣∣∣ = 0, α > 1.

For the general case of partitioning α into β parts, we split the partitions into those that
have at least one 1 among the parts and those where each part is greater than 1. The first
group of partitions is obtained by including all partitions of n − 1 into m − 1 parts, and
then add 1 in the empty arrangement, and the second group of partitions is obtained by
including all partitions of n −m into m parts, where 1 could be added to each part. We
then have ∣∣∣∣ N −N∗

N∗

∣∣∣∣ = ∣∣∣∣ N −N∗ − 1
N∗ − 1

∣∣∣∣+ ∣∣∣∣ N − 2N∗

N∗

∣∣∣∣ .
By repeating this procedure we will end up with a sum of 0s and 1s.

The above calculation derives the number of possible networks when the number of
circles are restricted to be equal to N∗. Then, the number of all possible networks is given
by

N
2∑

N∗=1

∣∣∣∣ N −N∗

N∗

∣∣∣∣ for N even and

N−1
2∑

N∗=1

∣∣∣∣ N −N∗

N∗

∣∣∣∣ for N odd.

B Proofs

B.1 Lemma 3

Proof. We show this for the case when ϕ = 2 and the two banks hit by a shock are
neighbors, say bi and bi+1.

18 Let v̂ be equal to the number of additional liquidations had the
distance between the the two banks been sufficiently large. In that case the total number
of liquidations would have neen given by N̂ = 2 (v̂ + 1) and the solvency condition given
by

v̂R− (v̂ + 1)F + v̂ℓ (2 (v̂ + 1)) < 0 ⩽ (v̂ + 1)R− (v̂ + 2)F + (v̂ + 1) ℓ (2 (v̂ + 1)) . (24)

Bank bi will repay D+ℓ(N̂)−F to bank bi+1. Clearly if bi has been liquidated then bi+1

will also be liquidated given that its loan to bi has only been partially repaid. Following the
same steps as those used for the derivation of (2), we find that the number of additional
liquidations following the liquidation of bank bi+1, v̄, is given by the modified solvency
condition

v̄R− (v̄ + 2)F + (v̄ + 1) v̄ℓ (v̄ + 2) < 0 ⩽ (v̄ + 1)R− (v̄ + 3)F + (v̄ + 2) l (v̄ + 2) . (25)

The total number of liquidations are now given by N̂ = v̄ + 2. Comparing (24) with

(25), we find that on both sides there is an extra F term and an extra ℓ(N̂) term. However,

the inequality R− F − ℓ(N̂) > 0 implies that v̂ ⩽ v̄ ⩽ v̄ + 1. Thus, v̄ + 2 ⩽ 2 (v̂ + 1).

18It will become clear that if the result holds for this case it must also hold for any other arrangenment
of banks on the cycle.
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B.2 Proposition 4

Proof. Recall

π =

(
1− ϕ

N∗

)
+

ϕ

N∗

(
N∑

m=v∗+2

(
mn(m)

N

m− [v∗ + 1]

m

))
.

So define the difference

∆ ≡ π′ − π

= ϕ

(
1

N∗ − 1

N∗′

)
+
ϕ

N

N∑
m=v∗+2

(m− [v∗ + 1])

(
n(m)′

N∗′ − n(m)

N∗

)
. (26)

Then see that

N

N∗ =

∑v∗+1
m=2 (m− [v∗ + 1])n(m)

N∗ +

∑N
m=v∗+2(m− [v∗ + 1])n(m)

N∗

⇒
∑N

m=v∗+2(m− [v∗ + 1])n(m)

N∗ =
N

N∗ −
∑v∗+1

m=2 (m− [v∗ + 1])n(m)

N∗ . (27)

Moreover

N∑
m=2

n(m)

N∗ = 1

⇒
N∑

m=v∗+2

n(m)

N∗ = 1−
v∗+1∑
m=2

n(m)

N∗ . (28)

Hence we can use (27) and (28) in (26) to get

∆ = ϕ

(
1

N∗ − 1

N∗′

)
+
ϕ

N

N∑
m=v∗+2

(m− [v∗ + 1])

(
n(m)′

N∗′ − n(m)

N∗

)

=
ϕ

N

{(
N

N∗ − N

N∗′

)
+

N∑
m=v∗+2

(m− [v∗ + 1])

(
n(m)′

N∗′ − n(m)

N∗

)}

=
ϕ

N

v∗+1∑
m=2

(m− [v∗ + 1])

(
n(m)

N∗ − n′(m)

N∗′

)

B.3 Proposition 5

Proof. If Rc = 0, bc will be liquidated if (N − c− 1)D < F + cD or (N − 2c− 1)D < F .
If Rc−1 = 0, bc−1 will be liquidated if (N − c)D < F +(c−1)D or (N −2c+1)D < F . The
proof follows by comparing the two insolvency conditions and by induction. The second
part of the lemma follows from (18) and by comparing (29) and (30) below.
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B.4 Proposition 6

Proof. Consider bank bc, where Rc = 0. Denote aggregate losses by object Λ.

If (N − c− 1)D ⩾ F + cD or

(N − 2c− 1)D ⩾ F (29)

then N̂ = 0 & Λ = Rc & v∗c = 0

If (N − 2c− 1)D < F then

If (N − 2c− 1)D + ℓ(1) ⩾ F then N̂ = 1

& Λ = Rc +K − ℓ(1) & v∗c = 0

If (N − 2c− 1)D + ℓ(1) < F then19

F → min{(N − c− 1)D + ℓ(v∗c + 1), F} and

Dc → max{0, (N − c− 1)D + ℓ(v∗c + 1)− F}/c
Consider bank bc−1.

If Rc−1 + (N − c− 1)D +Dc ⩾ F + (c− 1)D or

Rc−1 + (N − 2c)D +Dc ⩾ F (30)

then N̂ = 1 & Λ = Rc +K − ℓ(1) & v∗c = 0

If Rc−1 + (N − 2c)D +Dc < F then

If Rc−1 + (N − 2c)D +Dc + ℓ(2) ⩾ F then20

N̂ = 2 & Λ = Rc + 2 (K − ℓ(2)) & v∗c = 1

If Rc−1 + (N − 2c)D +Dc + ℓ(2) < F then

F → min{Rc−1 + (N − c− 1)D +Dc + ℓ(v∗c + 1), F} and

Dc−1 → max{0, Rc−1 + (N − c− 1)D +Dc + ℓ(v∗c + 1)− F}/(c− 1)

Consider bank bc−2

If Rc−2 + (N − c)D +Dc +Dc−1 ⩾ F + (c− 2)D or

Rc−2 + (N − 2c+ 2)D +Dc +Dc−1 ⩾ F (31)

then N̂ = 2 & Λ = Rc + 2 (K − ℓ(2)) & v∗c = 1.

If Rc−2 + (N − c+ 2)D +Dc +Dc−1 < F then

If Rc−2 + (N − c+ 2)D +Dc +Dc−1 + ℓ(3) ⩾ F then

N̂ = 3 & Λ = Rc + 3 (K − ℓ(3)) & v∗c = 2

If Rc−2 + (N − c+ 2)D +Dc +Dc−1 + ℓ(3) < F then

F → min{Rc−2 + (N − c)D +Dc +Dc−1 + ℓ(v∗c + 1), F} and

Dc−2 → max{0, Rc−2 + (N − c)D +Dc +Dc−1 + ℓ(v∗c + 1)}/(c− 2).

The solvency condition then follows by induction.

19At this point is not known the total number of banks that will be liquidated, N̂ , given that v∗c has
not been determined yet.

20Lemma 5 ensures that the liquidation value in that case is equal to ℓ(2).
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B.5 Proposition 7

Proof. This follows from (a) as c increases Rc increases and therefore the impact of
catastrophic shocks increase, and (b) the number of borrowing banks, and thus repayments,
declines.

B.6 Proposition 8

Proof. The definition of the difference is

∆′ =
1

N
1[(N−c−1)D≥F+cD] +

c−1∑
s=0

1

N
+

N∑
s=c+1

1

N
1[v∗s<(s−c)]

− 1

N
1[(N−c′−1)D≥F+c′D] −

c′−1∑
s=0

1

N
−

N∑
s=c′+1

1

N
1[v∗s<(s−c′)].

The proof then just follows easily using the assumption that c′ > c.

B.7 Proposition 9

Proof. The definition of the difference is

∆′ =
1

N + 1
1[(N−c)D≥F+cD] +

c−1∑
s=0

1

N + 1
+

N+1∑
s=c+1

1

N + 1
1[v∗s<(s−c)]

− 1

N
1[(N−c′−1)D≥F+c′D] −

c′−1∑
s=0

1

N
−

N∑
s=c′+1

1

N
1[v∗s<(s−c′)].

The expression then follows from further basic manipulations.
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v∗ Ψ(v∗)
0 ϕ
1 2ϕ
2 2n̂(2) + 3 (ϕ− n̂(2))
3 2n̂(2) + 3n̂(3) + 4 (ϕ− n̂(2)− n̂(3))
...

...
v∗ 2n̂(2) + · · ·+ v∗n̂(v∗) + (v∗ + 1) (ϕ− n̂(2)− · · · − n̂(v∗))

Table 4: The function Ψ (v∗)

C Details on Multiple Cycles Network Equilibrium Solution

Here we provide more details on solving for the model’s equilibrium.

The Function Ψ(v∗) We begin the analysis of (11) by taking a closer look at the
function Ψ (v∗) given by (10). Table 4 shows the values of this function for different values
of v∗. When v∗ = 0, the only banks that get liquidated are those that were hit by a shock.
Given that the minimum size of a circle is 2 and given that each circle can be hit by at
most one shock, when v∗ = 1 the number of banks that will be liquidated will be twice
the number of initial shocks. For v∗ ⩾ 2, as long as there are circles of size less than v∗

hit by a shock, then the total number of liquidations on such circles is restricted by their
size. For example, for v∗ = 3 all the banks of circles of size less or equal to 3 that were hit
by a shock will be liquidated, as shown by the first two terms in the table. In contrast,
for all circles of size greater or equal than 4 that were hit by a shock exactly 4 banks will
be liquidated, as shown by the last term of the table.

By collecting terms we get21

Ψ(v∗) = (v∗ + 1)ϕ−
v∗−1∑
γ=1

(v∗ − γ) n̂(γ + 1). (32)

Clearly, (32) implies that both the total number of banks that will get liquidated and the
size of aggregate losses will depend on the structure of the network.

The Function V (L) Next, we turn our attention to the function V (L). Given
that at least ϕ banks will be liquidated, the maximum value of liquidated assets is equal to
ℓ (ϕ) < K. Then, from the discussion of account settlements, we find that ifR−2F+ℓ (ϕ) ⩾
0 then v∗ = 0. Let δ be a real number such that the LHS of the solvency condition (2) is
equal to 0, that is δR− (δ + 1)F + δL = 0. Then,

v∗ = V (L) = Int(δ) = Int

[
F

R− F + L

]
(33)

21We can write the bottom expression of the table as (v∗ + 1)ϕ− (v∗ − 1) n̂ (2)− (v∗ − 2) n̂ (3)− · · · −
n̂ (v∗).
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The Solution By substituting (1) in (33) and (33) in (32) we obtain a closed form
expression for (11). Depending on the parameter values of the model, we can get two types
of solutions shown in Figure 6 and described below.

φ

φ
N̂

0

ψ(φ)

N̂

ψ(N̂)

N̂
∗

N

ψ(N̂0)

ψ(N)

Figure 6: The function ψ(N̂)

Proposition 10 Given a network G and ϕ shocks the number of banks that are liquidated
in equilibrium are given by:

(a) If R− 2F + ℓ (ϕ) ⩾ 0 then N̂∗ = ϕ; (Type 1: Without-Cascades Equilibrium )

(b) If R− 2F + ℓ (ϕ) < 0 then there exists N̂∗ > ϕ such that (11) is satisfied; (Type 2:
With-Cascades Equilibrium)

In part (a), the inequality implies that if the only banks liquidated are those hit by
the initial shock, the liquidation value of the assets is sufficiently high for v∗ = 0 (no
cascades) which in turn means that N̂∗ = ϕ. Figure 6 shows the determination of the
equilibrium where the 450 line stands for the left side of (11) and the bold step function
stands for the right side of (11). When R − 2F + ℓ (ϕ) < 0 then for N̂ = ϕ we have
v∗ > 0. As the number of liquidated banks increases, the liquidation value of assets drops.
However, given that v∗ can only take integer values, as long as the second inequality in

the solvency condition (2) are satisfied, V
(
ℓ
(
N̂
))

remains stays the same (we move

horizontally). Given that ϕ < n∗ and therefore N̂∗ < N , the step function will eventually
cross the 450 line. The crossing (there might be multiple) corresponds to the equilibrium
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sI = n̂(2) SI N̂s

0 1×
(
n∗−n(2)

ϕ

)
3ϕ

1 n(2)×
(
n∗−n(2)

ϕ−1

)
2 + 3 (ϕ− 1)

2
(
n(2)
2

)
×
(
n∗−n(2)

ϕ−2

)
4 + 3 (ϕ− 2)

...
...

...

ϕ
(
n(2)
ϕ

)
× 1 2ϕ

Table 5: States for v∗s = 2.

of the model. From Figure 6 we find that when N̂ = N̂0, ψ0 = ψ
(
N̂0
)
> N̂0. However,

V
(
ℓ
(
ψ
(
N̂0
)))

= V
(
ℓ
(
N̂∗
))

which implies that ψ
(
N̂0
)
= N̂∗.

Remark 1 When the parameters are such that case (b) of Proposition 10 is relevant
there might be multiple crossings of the step function with the 450 line. In that case, the
equilibria can be ranked according to their corresponding liquidation values.22 When there
are multiple equilibria our solution above always identifies the ‘best’ one, that is the one
with the smaller number of liquidations (higher liquidation values).

D State Calculations for Multiple Cycles Network

In this appendix, we briefly illustrate how one goes about enumerating all possible states
of the world, which enter into risk calculations. When considering a network with balance
sheets yielding v∗s = 2 for all states s, we can list the possible states as in Table 5. In the
context of Subsection 3.3.2, n̂(2) is the number of circles of size 2 that are hit by a shock
and sI denotes an arbitrary such state. Object SI is the number of indistinguishable states
for a given sI and N̂s is the number of banks that default in a given state. Table 6 gives
performs the same enumeration for a network where states can vary between v∗s ∈ {2, 3}.
We consider a specific example below.

Example 2 Consider a network with N = 21, n∗ = 7 and µ = 4, where n(2) = 3,
n(3) = 2, n(4) = 1 and n(5) = 1. Further, ϕ = 3. For this example S =

(
n∗

ϕ

)
= 35.

For the network of Example 2 for n̂(2) = (0, 1, 2, 3) the number of corresponding states
are equal to (4, 18, 12, 1) which add up to 35. For n̂(2) = 2, there are 4 banks that will
be liquidated, since they belong to the two circles of size 2 hit by shocks. For each of the
remaining circles hit by shocks there will be 3 banks liquidated. The corresponding list of
states is given in Table 7.

22For a more thorough discussion of multiplicity see Jackson and Pernoud (2022).
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sI = (n̂(2), n̂(3)) SI N̂s

0 = (0, 0) 1× 1×
(
n∗−n(2)

ϕ

)
4ϕ

1 = (0, 1) 1× n(3)×
(
n∗−n(2)−n(3)

ϕ−1

)
3 + 4 (ϕ− 1)

2 = (1, 0) n(2)× 1×
(
n∗−n(2)−n(3)

ϕ−1

)
2 + 4 (ϕ− 1)

3 = (0, 2) 1×
(
n(3)
2

)
×
(
n∗−n(2)−n(3)

ϕ−2

)
6 + 4 (ϕ− 2)

4 = (1, 1) n(2)× n(3)×
(
n∗−n(2)−n(3)

ϕ−2

)
5 + 4 (ϕ− 2)

5 = (2, 0)
(
n(2)
2

)
× 1×

(
n∗−n(2)−n(3)

ϕ−2

)
4 + 4 (ϕ− 2)

6 = (1, 2)
(
n(2)
1

)
× 1×

(
n∗−n(2)−n(3)

ϕ−2

)
8 + 4 (ϕ− 3)

...
...

...

s′ = (n̂(2), n̂(3))
(
n(2)
n̂(2)

)
×
(
n(3)
n̂(3)

)
×
(
n∗−n(2)−n(3)
ϕ−n̂(2)−n̂(3)

)
2n̂(2)+3n̂(3)+4(ϕ−n̂(2)−n̂(3))

...
...

...

s̄ = (ϕ, 0)
(
n(2)
ϕ

)
× 1× 1 2ϕ

Table 6: States for v∗s ⩽ 3.

s = (n̂(2), n̂(3)) SI
s N̂s

0 = (0, 1) 2 11
1 = (1, 0) 3 10
2 = (0, 2) 2 10
3 = (1, 1) 12 9
4 = (2, 0) 6 8
5 = (1, 2) 3 8
6 = (2, 1) 6 7
7 = (3, 0) 1 6

Table 7: States for v∗s ⩽ 3 for Example 2.
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E Extensions for Multiple Cycles Network

E.1 D < F

Now we allow for the obligation to the supplier to be less than the obligation to the
depositors. When the bank that is hit by a shock cannot meet fully its obligations, its
creditor’s compensation will be equal to max{0, D + L − F}. We will first show that if
D+L− F > 0 then the analysis above is still valid. Then, we will show the changes that
we need to make when D + L− F < 0.

Suppose that D + L − F > 0, meaning that the creditor bank receives a payment.
Clearly, if the creditor bank can fully meet its obligations to its depositors and its creditor,
the analysis remains the same. If it cannot, then its creditor will be given R+D−2F+2L >
0, where the inequality follows fromD+L−F > 0 and R > F . It follows that all depositors
in subsequent rounds will also be fully compensated and thus the analysis is still the same.23

Next, suppose that D + L − F < 0. Now the creditor of the bank hit by the shock
receives nothing. Then the creditor’s assets assets are equal toR+L. As long as R ⩾ D+F ,
it will fully meet its obligations. If R < D+F then the bank will be liquidated but it will
still fully meet its obligations as long as R+L ⩾ D+F . If, in contrast, R+L−D−F < 0
its own creditor bank will receive R+L−F . The assets of this creditor bank are equal to
2R + 2L− F . Then as long as 2R + L− F ⩾ D + F , it will fully meet its obligations. If
2R + L− F < D + F , then it will be liquidated but will still fully meet its obligations as
long as 2R+2L−F ⩾ D+F . If, in contrast, 2R+2L−D−2F < 0, its own creditor bank
will receive 2R+2L− 2F . By induction we conclude that the number of additional banks
that are liquidated, v∗, (that is other than the one initially hit by the shock) satisfies the
new Solvency Condition (SC)

v∗R− v∗F −D + v∗L < 0 ⩽ (v∗ + 1)R− (v∗ + 1)F −D + (v∗ + 1)L. (1′)

Once more, this condition holds as long as the size of the circle is at least v∗ + 1.

E.2 Multiple Shocks

One of the aims of this paper is to demonstrate how, for a given network structure, the
distribution of shocks across the network is an important determinant of the number of
liquidations in equilibrium and thus the level of aggregate losses. In the benchmark case,
we have assumed that each circle can be hit by at most one shock. It was briefly mentioned
that, while this assumption simplified a lot of the account settlements analysis, it has also
weakened our results. In this section, we allow for multiple shocks to hit a given circle
and show that this can strengthen the impact of the distribution of shocks on aggregate
outcomes.

The introduction of multiple shocks enlarges the state space. Now the total number of
states is equal to

(
N
ϕ

)
= N !

ϕ!(N−ϕ)!
. We are going to focus on the case where D < F . The

23For circles with size smaller than v∗ + 1 the analysis also remains the same given that all creditor
banks do not receive any compensation.
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implication of this restriction is that the creditor of a bank hit by a shock, will not receive
any compensation, even if the latter bank’s debtor survives. In this case, the assets of
the bank hit by the shock are equal to D, which are not sufficient to cover the claims of
depositors.24

Next consider what happens for a fixed value of v∗ when a circle is hit by a second
shock. For circles of size less than v∗ + 1, all banks get liquidated when even only one of
them is hit by a shock. A second shock will not affect the number of liquidated banks, but
it will have distributional effects. In contrast, when a circle of size greater than v∗ + 1 is
hit by a shock then the number of banks that are liquidated will depend on both the exact
size of the circle and the position of the two banks on the circle. The assumption D < F
implies that the number of banks liquidated after a shock hits, is independent of what
happened to the shocked bank’s creditor (i.e. whether the creditor was hit by a shock or
was partially or fully compensated). Clearly, the number of banks that will be liquidated
will be between v∗ +2 (this will be the case when the two banks hit by shocks are next to
each other) and 2(v∗ + 1) (when the shortest path between them is at least v∗ + 1.

The above discussion implies that, when we introduce multiple shocks, the distribution
of the number of liquidated banks across states is affected in two ways. Firstly its variance
increases since there are more ways to have shocks concentrated on small size circles, as
there are similarly for large circles. Secondly, this variance effect is asymmetric, as the
upper bound of liquidations has now increased. Furthermore, so far we have assumed that
the value of v∗ has not been affected with this extension. However, as the losses due to
fire sales increase with the number of liquidations, v∗ can be even higher in those states
where there are multiple shocks in large circles. In summary, allowing for multiple shocks
exacerbates the impact of network effects on systemic risk and aggregate outcomes.

E.3 Risk Premium for D under Partial Compensation

In the benchmark case, we have assumed that all banks that are not liquidated have the
interbank loans that they offered to other banks fully repaid. However, in circles where
m > z∗ + 1, the first bank to survive (z∗ + 1 places down from the bank hit by the shock)
will only be partially compensated. The partial compensation will be state dependent and
we denote it as Ds < D. We will consider the more complicated case where v∗s ∈ {2, 3}.
Let E(DP ) denote the expected value of compensation to be received from the debtor
bank when we allow for partial compensation. Then, we have

24For the case when D > F , the analysis is more complicated. However it will become clear that, in
that case, our conclusions about the impact of the shock distribution on aggregate outcomes would be
even stronger.
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E(DP ) =


(
1− ϕ

n∗

)
+

ϕ

n∗


γ∑

s=0

ps

N∑
m=6

(
mn(m)

N
m−5
m

)
+

s̄∑
s=γ+1

ps

N∑
m=5

(
mn(m)

N
m−4
m

)

D

+
ϕ

n∗

(
γ∑

s=0

ps

N∑
m=5

mn(m)

N

1

m
Ds +

s̄∑
s=γ+1

ps

N∑
m=4

mn(m)

N

1

m
Ds

)

The first term on the right-hand side is equal to the probability that the bank will survive
conditional on receiving full compensation times the value of the claim. The term 1− ϕ

n∗

is equal to the probability of survival conditional that the circle where the bank belongs
is not hit by a shock. The next term in brackets is equal to the probability of survival
conditional on (a) that the circle where the bank belongs is hit by a shock, and (b) the
bank is fully compensated. In (13), the second condition was absent given that all banks
were assumed to be fully compensated. The first double summation is over those states
where v∗ = 3. Then, banks whose circles where hit by a shock and were fully compensated
by their buyers must belong to circles of size gretaer than 6.25 With probability mn(m)

N
,

the bank belongs to a circle of size m and given that 4 banks are liquidated and one
survives but is only partially compensated, the probability that the bank survives and is
fully compensated is equal to m−5

m
. The second double summation is over those states

where v∗ = 2 and is derived in a similar way.

The second term on the right hand side is equal to the expected value of partial
compensation. The expressions are similarly derived but there are two differences. In
circles of size equal to v∗ + 2 that were hit by a shock there is one surviving bank that
is partially compensated. For this reason the counter has decreased by 1. The second is
that in circles of size greater than v∗ + 2 there is only one bank that will receive partial
compensation and this accounts for the term 1

m
.

Under partial compensation, the implicit risk premium on inter-bank liabilities, ϱD
P
,

is given by

ϱD
P

=
D

E(DP )
.

E.4 The Bank’s Position in the Network is Known

In the main text, we have assumed that agents know the structure of the network but
do not know the exact position (circle size) of their bank in the network. Let m∗ denote
the size of the circle that a given bank belongs to. If m∗ ⩽ v∗s + 1 then the bank will
only survive if its circle is not hit by a shock, which happens with probability 1 − ϕ

n∗ . If

25In circles of size 5 only one firm survives but is only partially compensated.
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m∗ > v∗s + 1 the probability that the bank survives is now given by:26

πv∗s =

(
1− ϕ

n∗

)
+

ϕ

n∗
m∗ − (v∗s + 1)

m∗ .

In the case when the bank’s position was unknown we had to take the expectation of the
last term over all possible circle sizes. Once more we can use the probabilities of survival
to calculate the corresponding risk premia.

26Strictly speaking this is correct if the value of v∗s does not depend on the state of nature. If it does
then we need to adjust the formula as we did in the derivation of (13) above.
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