Labour Market Monopsony Power and the Dynamic Gains to Openness Reforms

Priyaranjan Jha University of California, Irvine & CESifo Antonio Rodriguez-Lopez University of California, Irvine & CESifo

Adam Hal Spencer University of Nottingham

University of Kent Wednesday November 29th 2023

Roadmap

Introduction

Model Environment and Equilibrium

• How does monopsony power in labour markets quantitatively affect the dynamic gains to tariff and FDI liberalisation episodes.

Motivation

• Monopsony power: upward-sloping firm-level labour supply.

Motivation

- Monopsony power: upward-sloping firm-level labour supply.
- Surge of empirical studies documenting finitely elastic firm-level labour supply.
 - ▶ Naidu, Posner, Weyl (2018): 1–5.
 - ▶ Berger, Herkenhoff & Mongey (2022): 0.76–3.74.
 - ▶ Webber (2015): 1.08.
 - ▶ Yeh, Macaluso & Hershbein (2022): 1.88.

Motivation

- Monopsony power: upward-sloping firm-level labour supply.
- Surge of empirical studies documenting finitely elastic firm-level labour supply.
 - ▶ Naidu, Posner, Weyl (2018): 1–5.
 - ▶ Berger, Herkenhoff & Mongey (2022): 0.76–3.74.
 - ▶ Webber (2015): 1.08.
 - ▶ Yeh, Macaluso & Hershbein (2022): 1.88.

• Melitz (2003) assumes infinitely elastic firm-level labour supply.

(i) Develop a dynamic two-country model of firm heterogeneity and monopsony power.

- (i) Develop a dynamic two-country model of firm heterogeneity and monopsony power.
 - Iceberg-fixed cost tradeoff of exporting/horizontal FDI (Helpman, Melitz & Yeaple, 2004).

- (i) Develop a dynamic two-country model of firm heterogeneity and monopsony power.
 - Iceberg-fixed cost tradeoff of exporting/horizontal FDI (Helpman, Melitz & Yeaple, 2004).
 - One-off sunk and period-by-period fixed costs for statuses (Alessandria & Choi, 2007, Ruhl & Willis, 2017, Alessandria, Choi & Ruhl, 2021).

- (i) Develop a dynamic two-country model of firm heterogeneity and monopsony power.
 - Iceberg-fixed cost tradeoff of exporting/horizontal FDI (Helpman, Melitz & Yeaple, 2004).
 - One-off sunk and period-by-period fixed costs for statuses (Alessandria & Choi, 2007, Ruhl & Willis, 2017, Alessandria, Choi & Ruhl, 2021).
 - CES labour supply aggregator over employers (Berger, Herkenhoff & Mongey, 2022).

- Imperfect labour market environment has 3 distinctive features:
 - 1. Upward-sloping firm-level labour supply curves (USLS),

- Imperfect labour market environment has 3 distinctive features:
 - 1. Upward-sloping firm-level labour supply curves (USLS),
 - 2. Wage mark-downs (WMD),

- Imperfect labour market environment has 3 distinctive features:
 - 1. Upward-sloping firm-level labour supply curves (USLS),
 - 2. Wage mark-downs (WMD),
 - 3. Love of employer variety (LOVE).

- (ii) Discipline the model with U.S. firm-level data.
 - ▶ Take labour supply elasticity of 1.88 from Yeh et al. (2022).

- (ii) Discipline the model with U.S. firm-level data.
 - ▶ Take labour supply elasticity of 1.88 from Yeh et al. (2022).

- (iii) Tariff liberalisation and FDI liberalisation exercises.
 - Both bilateral and unilateral reforms.
 - Steady state and transition path.

(iv) Shut-down each (and all) feature(s) WMD, LOVE, USLS.

- ▶ Re-calibrate the model.
- ▶ Holding moments and policy instrument magnitudes constant.

(iv) Shut-down each (and all) feature(s) WMD, LOVE, USLS.

Re-calibrate the model.

▶ Holding moments and policy instrument magnitudes constant.

(v) Run same quantitative exercises and compare.

Results Preview: Welfare Gains (Bilateral Liberalisations)

Labour Market	Tariff	FDI Tax
Imperfect (3 features)	4.7%	1.0%
Perfect (none)	0.9%	0.2%
Difference	3.8%	0.8%

Results Preview: Welfare Gains (Bilateral Liberalisations)

Labour Market	Tariff	FDI Tax
Imperfect (3 features)	4.7%	1.0%
Perfect (none)	0.9%	0.2%
Difference	3.8%	0.8%
Wage markdowns (WMD)	-0.03%	-1.00%
Love of employer variety (LOVE)	2.10%	4.90%
Upward-sloping labour supply (USLS)	2.00%	-3.10%

• Two ingredients interact:

- Two ingredients interact:
 - a. Fixed v.s. variable cost trade-off for matching the data.
 - b. Roundabout production: fixed costs come from final goods.

- Perfect labour markets: constant marginal and high fixed.
- Imperfect labour markets: increasing marginal and low fixed.

- Perfect labour markets: constant marginal and high fixed.
- Imperfect labour markets: increasing marginal and low fixed.
 - ▶ Increasing marginal cost limits expansion at intensive margin.
 - Leaves more space for action at the extensive margin.

- Perfect labour markets: constant marginal and high fixed.
- Imperfect labour markets: increasing marginal and low fixed.
 - ▶ Increasing marginal cost limits expansion at intensive margin.
 - Leaves more space for action at the extensive margin.
 - Stronger rise in measure of varieties abroad in final goods.
 - Lowers sunk/fixed costs.
 - ► Further amplification.

Roadmap

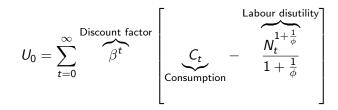
Introduction

2 Model Environment and Equilibrium

Setup

- Two countries: Home (H) and Foreign (F).
 - ▶ Focus on *H* in the exposition.
 - ▶ Superscript * pertains to *F* activities.

Setup


- Two countries: Home (H) and Foreign (F).
 - ▶ Focus on *H* in the exposition.
 - ▶ Superscript * pertains to *F* activities.

• Labour is the only factor of production.

• Time is discrete $t \in \{0, 1, 2, ...\}$.

• Four agents in each country: households, government, intermediate goods firms, final goods firms.

Objective

where ϕ is the Frisch elasticity.

• Labour supply aggregator (as in Blanchard & Giavazzi, 2003)

$$N_t = \left(\int_{\omega \in \Omega_t^P} \underbrace{n_t(\omega)^{\frac{1+\theta}{\theta}}}_{\text{Employment } \omega} d\omega \right)^{\frac{\theta}{1+\theta}}$$

where $\theta > \phi$ is firm-level elasticity of labour supply.

• Labour supply aggregator (as in Blanchard & Giavazzi, 2003)

$$N_{t} = \underbrace{\left(\underbrace{\Omega_{t}^{P}}_{Mass \text{ employers}}\right)^{\frac{\eta}{1+\theta}}}_{Mass \text{ employers}} \left(\int_{\omega \in \Omega_{t}^{P}} \underbrace{n_{t}(\omega)^{\frac{1+\theta}{\theta}}}_{Employment \ \omega} d\omega\right)^{\frac{\theta}{1+\theta}}$$

where $\theta > \phi$ is firm-level elasticity of labour supply.

• $\eta = 1$ eliminates LOVE in employment.

Households: Illustrating LOVE

• Aggregate hours for production:

$$L_t = \int_{\omega \in \Omega_t^P} n_t(\omega) d\omega$$

Households: Illustrating LOVE

• Aggregate hours for production:

$$L_t = \int_{\omega \in \Omega_t^P} n_t(\omega) d\omega$$

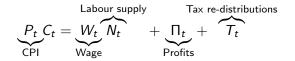
• Special case: homogenous firms where $n_t(\omega) = n_t$

$$L_t = \Omega_t^P n_t$$
$$N_t = (\Omega_t^P)^{\frac{\eta+\theta}{1+\theta}} n_t$$

Households: Illustrating LOVE

• Aggregate hours for production:

$$L_t = \int_{\omega \in \Omega_t^P} n_t(\omega) d\omega$$


• Special case: homogenous firms where $n_t(\omega) = n_t$

$$L_t = \Omega_t^P n_t$$

 $N_t = (\Omega_t^P)^{\frac{\eta+\theta}{1+\theta}} n_t$

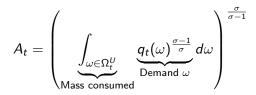
• For constant *L*_t, see that

$$N_t = \frac{L_t}{(\Omega_t^P)^{\frac{1-\eta}{1+\theta}}}$$

• Budget constraint

• Labour supply curve

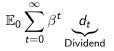
$$n_t(\omega) = \overbrace{B_t}^{\text{Aggregates}} \underbrace{w_t(\omega)^{\theta}}_{\text{Wage at firm } \omega}$$


used in the intermediate firms' problem.

• Where θ is elasticity of labour supply.

Final Goods Firms

• Perfectly competitive.


Aggregator

where $\sigma > 1$ is elasticity of substitution.

• Tariff $\hat{\tau}^X$ paid on imported varieties.

• Objective

Production technology

• Productivity law of motion

$$\log(z_t) = \rho_z \log(z_{t-1}) + \epsilon_t, \ \epsilon_t \sim N(0, \sigma_z^2)$$

- Discrete choice of status s_{t+1} for next period
 - ▶ Exit (*E*),
 - Domestic (D),
 - Exporter (X),
 - ▶ Multinational (*M*).

- Discrete choice of status s_{t+1} for next period
 - ► Exit (E),
 - Domestic (D),
 - ▶ Exporter (X),
 - Multinational (M).
- Pay fixed cost $f_t(s_t, s_{t+1})$ for $s_t, s_{t+1} \in \{D, X, M\}$.
 - One-time sunk cost of upgrading if $s_{t+1} \neq s_t$.
 - Only period-by-period fixed cost if $s_{t+1} = s_t$.

 Iceberg costs of exporting and FDI τ^s ≥ 1 for s ∈ {X, M} (as in Arkolakis, Ramondo, Rodriguez-Clare & Yeaple, 2018).

- Tax on outward FDI profits $\hat{\tau}^M \in [0, 1]$ as in Spencer (2022).
- New entrants pay sunk cost f^T and commence with D status; initial productivity drawn from ergodic distribution.

Equilibrium

- Equilibrium is defined such that
 - All agents are optimising,
 - All markets are clearing,
 - Free entry condition holds, Show
 - Cross-sectional measure satisfies its law of motion, Show
 - Government budget constraint holds. Show

Roadmap

Model Environment and Equilibrium

Calibration Details

- Conduct tariff reduction exercises with FDI prohibitively costly.
- Five sets of calibrations (C1–C5) for tariff exercises:
 - ▶ C1: firms set wages, $\theta < \infty$ and $\eta = 0$ (WMD, LOVE, USLS),
 - C2: same as C1 but firms are wage-takers (LOVE, USLS),
 - C3: same as C1 but $\eta = 1$ (WMD, USLS),

• C4: same as C2 but
$$\eta = 1$$
 (USLS),

• C5:
$$\theta \to \infty$$
 (none).

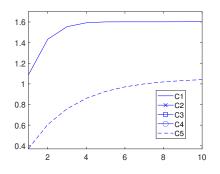
Calibration Details

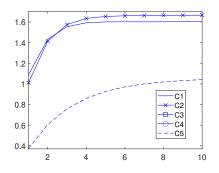
• Another 5 parameterisations where FDI is not prohibitively costly.

• Same setups as C1–C5.

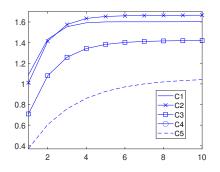
Roadmap

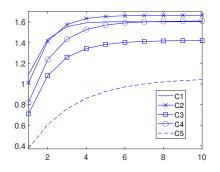
Model Environment and Equilibrium



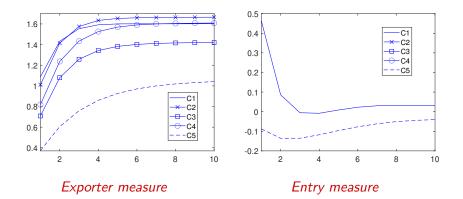

- Consider two exercises:
 - ▶ Bilateral reduction of export tariff to zero.
 - Bilateral reduction of FDI tax to zero.

• MIT shock: unforeseen and permanent announced at time t = 0.

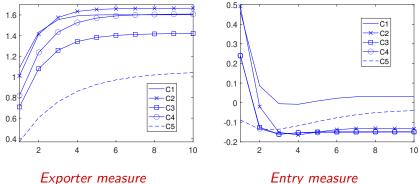

Export Tariff


- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5,

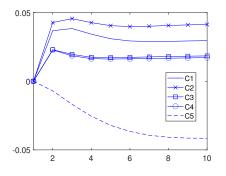
- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5,
- Wage mark-downs (WMD) \rightarrow C1 v.s. C2,



- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5,
- Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,


- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5, • Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) \rightarrow C4 v.s. C5.

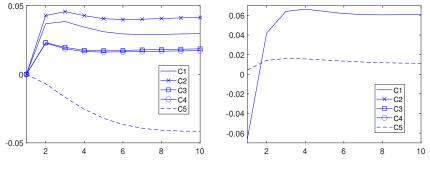
Bilateral Tariff Reduction


- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5,
- Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) → C4 v.s. C5.

Bilateral Tariff Reduction

Entry measure

- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5.
- Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) \rightarrow C4 v.s. C5.

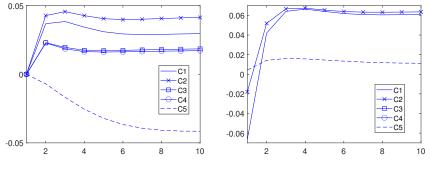


Overall measure

- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5, • Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) \rightarrow C4 v.s. C5.

25 / 28

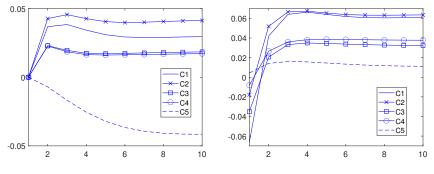
Bilateral Tariff Reduction


 \rightarrow C1 v.s. C2,

Overall measure

- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5,
- Wage mark-downs (WMD)
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) \rightarrow C4 v.s. C5.

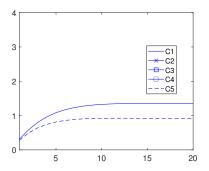
Bilateral Tariff Reduction


 \rightarrow C1 v.s. C2,

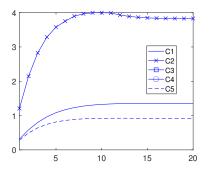
Overall measure

- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5,
- Wage mark-downs (WMD)
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) → C4 v.s. C5.

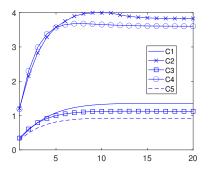
Bilateral Tariff Reduction



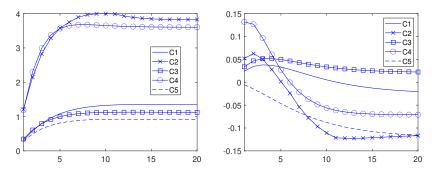
Overall measure


- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5,
- Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) → C4 v.s. C5.

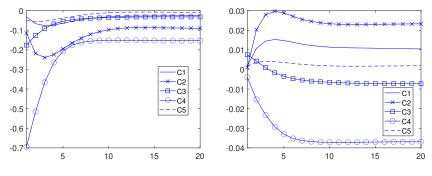
FDI Tax


Multinational measure

- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5, • Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) \rightarrow C4 v.s. C5.


Multinational measure

- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5, • Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) \rightarrow C4 v.s. C5.


Multinational measure

- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5, • Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) \rightarrow C4 v.s. C5.

Multinational measure

- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5,
- Wage mark-downs (WMD) \rightarrow C1 v.s. C2,
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) → C4 v.s. C5.

 \rightarrow C1 v.s. C2,

Entry measure

- Axes: X time (years) and Y % deviation from steady state.
- Imperfect v.s. perfect \rightarrow C1 v.s. C5,
- Wage mark-downs (WMD)
- Love of employer variety (LOVE) \rightarrow C1 v.s. C3,
- Upward-sloping labour supply (USLS) → C4 v.s. C5.

Roadmap

Model Environment and Equilibrium

• How does labour market power quantitatively affect the welfare gains of liberalisation episodes?

• Developed a general framework with dynamics and monopsony power.

• Tariff reduction: 1% with perfect competition v.s. 5% with monopsony.

Entrants

• Value function

$$\mathbf{v}_t^{\mathsf{T}} = -f^{\mathsf{T}} + \beta \underbrace{\mathbb{E}_t^{\mathsf{T}}}_{t} \left[\mathbf{v}_{t+1}(z_{t+1}, D) \right]$$

Ergodic distribution

Equilibrium definition

Cross-Sectional Law of Motion

 $\mu_{t+1}(z_{t+1}, s_{t+1})$

• Define cross-sectional measure as $\mu_t(z_t, s_t)$

 $= \sum_{s_t \in \{D, X, M\}} \int_{Z_t} \int_{f_t} \mathbb{1}_{s_{t+1} = s_{t+1}(z_t, s_t)} \underbrace{Q(z_{t+1}|z_t)}_{\text{Productivity}} \underbrace{H(f_t)}_{H(f_t)} \mu_t(dz_t, s_t)$ $+ \underbrace{M_t^T}_{\text{Measure entrants}} \mathbb{1}_{s_{t+1} = D} \underbrace{Q^t(z_{t+1})}_{\text{Ergodic distribution}}$

Equilibrium definition

Cross-Sectional Law of Motion

• Government budget constraint

$$T_{t} = \underbrace{(\widehat{\tau}^{X} - 1)I_{t}}_{\text{Import tariffs}} + \underbrace{\widehat{\tau}^{M}\Pi_{t}^{M*}}_{\text{FDI taxes}}$$
Equilibrium definition

Parameters Set Outside the Model

Parameter	Symbol	Value	Source
Discount factor	β	0.98	Literature
Frisch elasticity	ϕ	0.20	Literature
Elasticity of labour supply	θ	1.08	Literature
Love of variety control	η	0.00	Baseline
Elasticity of substitution	σ	5.00	Literature
Exporting tariff in C1	$\widehat{ au}^{X}$	1.10	Literature
Persistence of productivity	ρ_z	0.66	Compustat
Variability of productivity	σ_z	0.22	Compustat

Parameters Set Inside the Model

	Calibration						
Parameter		C1	C5	C6	C10	Target	
Sunk cost of entry	f^T	0.295	0.430	0.299	0.468	Unit wage	
Sunk cost of (D, X) ave	$\widehat{f}^{X,D}$	0.029	0.193	0.025	0.144	Transition (D, X)	
Fixed cost of X	$f^{X,C}$	0.012	0.035	0.012	0.031	Transition (X, X)	
Sunk cost variability	σ_{f}	0.400	0.900	0.550	6.000	Transition (X, E)	
Fixed cost	f ^C	0.463	0.210	0.468	0.210	Exit rate	
Physical iceberg cost X	τ^X	1.350	1.400	1.330	1.322	Export intensity	
Export tariff	$\widehat{ au}^{X}$	1.100	1.070	1.120	1.120	Taxes/Output C1	
Sunk cost of (D, M) ave	$\widehat{f}^{M,D}$			0.174	0.303	Transition (D, M)	
Sunk cost of (X, M) ave	$\widehat{f}^{M,X}$			0.149	0.176	Transition (X, M)	
Sunk cost of (M, X) ave	$\widehat{f}^{X,M}$			0.066	0.128	Transition (M, X)	
Fixed cost of M	f ^{M,C}			0.081	0.066	Transition (M, M)	
Physical iceberg cost M	τ^M			1.855	1.235	FDI sales intensity	
FDI tax	$\widehat{ au}^{M}$			0.010	0.022	Taxes/Output C1	

Moments

	Calibration			Calibration			
Moment	Data	C1	C5	Data	C6	C10	Source
Transition (D, X)	0.011	0.012	0.012	0.011	0.027	0.015	Compustat
Transition (X, X)	0.872	0.878	0.878	0.820	0.821	0.827	Compustat
Transition (X, E)	0.074	0.050	0.050	0.070	0.076	0.053	Compustat
Exit rate	0.110	0.120	0.120	0.110	0.120	0.100	Literature
Export intensity	0.157	0.157	0.157	0.157	0.154	0.157	Compustat
Taxes/Output $\hat{\tau}^{X}$	0.002	0.002	0.002	0.002	0.002	0.002	C1
Transition (D, M)				0.022	0.023	0.024	Compustat
Transition (X, M)				0.060	0.078	0.075	Compustat
Transition (M, X)				0.004	0.001	0.001	Compustat
Transition (M, M)				0.890	0.888	0.887	Compustat
FDI sales intensity				0.299	0.300	0.300	Compustat
Taxes/Output $\widehat{ au}^{M}$				0.002	0.002	0.002	C1

