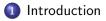
Lecture 10: New Keynesian Model Part III New Keynesian Phillips Curve

Adam Hal Spencer

The University of Nottingham

Advanced Monetary Economics 2020

Roadmap

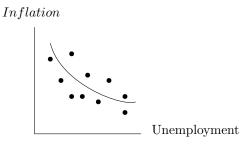


Derivation of Linearised Pricing

Derivation of new Keynesian Phillips Curve

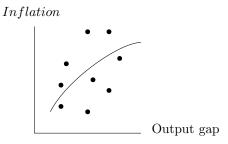
Motivation: Phillips Curve

- Phillips curve: idea that "economic activity" and inflation are positively related.
- Traditionally thought of as <u>unemployment</u> and price <u>inflation</u> having an inverse relationship.



Motivation: Phillips Curve

- Can also think of it as positive relationship between the output gap and inflation.
- The economy "heats-up" and prices rise when output is above its natural level.

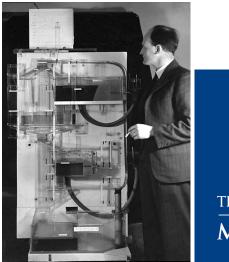


Motivation: Phillips Curve

• Empirics documented by A.W. Phillips of LSE in the 1950s.

Spencer (Nottingham)

Aside: Phillips and the MONIAC Machine



Motivation: Phillips Curve and Rational Expectations

- Friedman attacked the Phillips curve due to a lack of proper microfoundations.
- Relationship relies on the idea that you can sustain low unemployment with high inflation eroding real wages.
- But if wage-setters expect high inflation in the future, they'll adjust upwards. Stagflation.

Motivation: Phillips Curve and Rational Expectations

- Where to from here? Researchers tried to build models that would properly account for expectations while preserving the relationship.
- This is what we're after here in this lecture.

- We already have the ingredients we need to find this object from the last lecture, (the FOC for the optimal pricing problem).
- We just need to linearise it, (as is traditional in this literature).
- In what follows, we'll work with the Calvo pricing model.

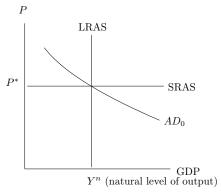
• The object we're working towards is

$$\hat{\pi}_t = \kappa \hat{y}_t^g + \beta \mathbb{E}_t [\hat{\pi}_{t+1}]$$

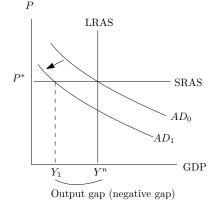
where $\hat{\pi}_t$ is inflation and \hat{y}_t^g is the output gap.

• A rational expectations relationship between inflation and the output gap.

- Notice that this is like the short run aggregate supply curve: all in temporary deviations.
- Whereas in the long run, prices are perfectly flexible and the natural level of output is all that matters.



- Output gap can happen in the short run.
- Gap gets closed with price flexibility in the long run though.



Roadmap

2 Derivation of Linearised Pricing

Derivation of new Keynesian Phillips Curve

So Begins a War of Algebra...

• It's going to be messy, but the derivation brings up a lot of important concepts.

Pricing FOC

• Recall the pricing FOC (under Calvo) was

$$\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty}\theta^{k}\mathcal{Q}_{t\to t+k}\left(Y_{t,t+k}\left[(1-\epsilon)+\epsilon\frac{1}{P_{t}^{*}}\mathcal{T}C_{t+k}'(Y_{t,t+k})\right]\right)\right\}=0 \quad (1)$$

where notice that I've dropped the j index and replaced the optimal price with P_t^* , (which is the same across all optimising firms).

Pricing FOC Intuition

- Our objective is to linearise (1).
- Why does this object give us a micro-founded Phillips curve that accounts for expectations?
- Firms set their prices at *t* expecting that they'll be stuck with it for a while.
- If they anticipate high demand in the future, (positive output gap), then they'll set a higher price than would prevail with perfect price flexibility (in the long run).
- Higher prices generate inflation.
- Positive correlation between expected inflation and the output gap.

Pricing FOC

Recall that

$$\mathcal{Q}_{t \to t+k} = \beta^k \left(\frac{C_{t+k}}{C_t}\right)^{-\sigma} \frac{P_t}{P_{t+k}}$$
$$Y_{t,t+k} = \left(\frac{P_t^*}{P_{t+k}}\right)^{-\epsilon} Y_{t+k}$$

• Substituting these into (1) and re-arranging for P_t^* gives (exercise: hint, you can cancel stuff that doesn't depend on k)

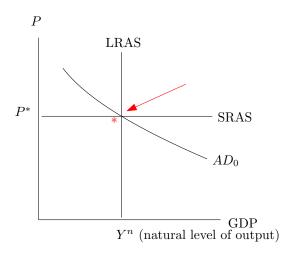
$$P_t^* = \frac{\epsilon}{\epsilon - 1} \frac{\mathbb{E}_t \sum_{k=0}^{\infty} (\theta\beta)^k (C_{t+k})^{-\sigma} P_{t+k}^{\epsilon-1} T C_{t+k}' (Y_{t,t+k}) Y_{t+k}}{\mathbb{E}_t \sum_{k=0}^{\infty} (\theta\beta)^k (C_{t+k})^{-\sigma} P_{t+k}^{\epsilon-1} Y_{t+k}}$$

that is $-P_t^*$ satisfies this equation. It's not a solution! Why?

- Recall there will generally be price dispersion with Calvo pricing.
- It's canonical to linearise about a zero inflation steady state.

- Zero inflation in the long run.
- What does this mean? See that if $P_t = P_{t-1}$ then

$$\begin{aligned} \Rightarrow \mathcal{P}_t &= \left[\theta \mathcal{P}_t^{1-\epsilon} + (1-\theta)(\mathcal{P}_t^*)^{1-\epsilon}\right]^{\frac{1}{1-\epsilon}} \\ \Rightarrow \mathcal{P}_t^{1-\epsilon} &= \theta \mathcal{P}_t^{1-\epsilon} + (1-\theta)(\mathcal{P}_t^*)^{1-\epsilon} \\ \Rightarrow \mathcal{P}_t &= \mathcal{P}_t^* \end{aligned}$$



- We'll just sit at point * in the long-run.
- No price changes in steady state.
- Temporary deviations from * induce inflation or disinflation.
- But only in the short-run.
- Right back to natural output (flexible price equilibrium output) in the long-run from these price adjustments.

Pricing FOC: Linearised Price Index

• In linearised form, the pricing law of motion is given by

$$\begin{aligned} \hat{\rho}_t &= \theta \hat{\rho}_{t-1} + (1-\theta) \hat{\rho}_t^* \\ \Rightarrow \hat{\rho}_t - \hat{\rho}_{t-1} &= \theta \hat{\rho}_{t-1} - \hat{\rho}_{t-1} + (1-\theta) \hat{\rho}_t^* \\ \Rightarrow \hat{\pi}_t &= (1-\theta) [\hat{\rho}_t^* - \hat{\rho}_{t-1}] \end{aligned}$$

(2)

Pricing FOC

• We can then re-write equation (1) as

$$\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} (\theta\beta)^{k} (C_{t+k}^{-\sigma}) P_{t+k}^{\epsilon-1} Y_{t+k} P_{t}^{*}\right\} =$$
(3)
$$\frac{\epsilon}{\epsilon-1} \mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} (\theta\beta)^{k} (C_{t+k}^{-\sigma}) P_{t+k}^{\epsilon-1} M C_{t,t+k} Y_{t+k}\right\}$$
(4)

where I've denoted $MC_{t,t+k}$ as the marginal cost of a firm at t + kwhen they set their last optimal price at time t (i.e. $MC_{t,t+k} = TC'_{t+k}(Y_{t,t+k})$).

Pricing FOC: Steady State

Notice that in steady state, we can write this as

$$\left\{\sum_{k=0}^{\infty} (\theta\beta)^{k} (\bar{C}^{-\sigma}) \bar{P}^{\epsilon-1} \bar{Y} \bar{P}^{*}\right\} = \frac{\epsilon}{\epsilon-1} \left\{\sum_{k=0}^{\infty} (\theta\beta)^{k} (\bar{C}^{-\sigma}) \bar{P}^{\epsilon-1} \overline{MC} \bar{Y}\right\}$$
(5)

where nothing depends on the k index except for $\sum_{k=0}^{\infty} (\theta \beta)^k = \frac{1}{1-\theta \beta}$.

• Then it follows that (5) simplifies down to

$$\bar{P}^* = \frac{\epsilon}{\epsilon - 1} \overline{MC} \tag{6}$$

what does this say? Look familiar?

Pricing FOC: Log-Linearisation

• Now linearise both sides of (3) to get

$$\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty}(\theta\beta)^{k}(\bar{C}^{-\sigma})\bar{P}^{\epsilon-1}\bar{Y}\bar{P}^{*}e^{-\sigma\hat{c}_{t+k}+(\epsilon-1)\hat{p}_{t+k}+\hat{y}_{t+k}+\hat{p}_{t}^{*}}\right\}$$
(7)
$$=\frac{\epsilon}{\epsilon-1}\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty}(\theta\beta)^{k}(\bar{C}^{-\sigma})\bar{P}^{\epsilon-1}\overline{MC}\bar{Y}e^{-\sigma\hat{c}_{t+k}+(\epsilon-1)\hat{p}_{t+k}+\widehat{mc}_{t,t+k}+\hat{y}_{t+k}}\right\}$$

Pricing FOC: Log-Linearisation

• Utilising steady state (6) in equation (7) and expanding the exponentials yields

$$\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty}(\theta\beta)^{k}\hat{p}_{t}^{*}\right\} = \mathbb{E}_{t}\left\{\sum_{k=0}^{\infty}(\theta\beta)^{k}\widehat{mc}_{t,t+k}\right\}$$
$$\Rightarrow \hat{p}_{t}^{*} = (1-\theta\beta)\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty}(\theta\beta)^{k}\widehat{mc}_{t,t+k}\right\}$$

what does this say?

• Expressing in terms of real marginal cost, $\widehat{mc}_{t,t+k}^r = \widehat{mc}_{t,t+k} - \hat{p}_{t+k}$ yields

$$\hat{\rho}_t^* = (1 - \theta\beta) \mathbb{E}_t \left\{ \sum_{k=0}^{\infty} (\theta\beta)^k \left[\widehat{mc}_{t,t+k}' + \hat{\rho}_{t+k} \right] \right\}$$
(8)

Roadmap

3 Derivation of new Keynesian Phillips Curve

Where to From Here?

- Equation (8) gives us the optimal reset price as a function of real marginal cost.
- But we want inflation relative to the output gap.
- Find a way to relate \hat{p}_t^* to $\hat{\pi}_t$ and a way to relate the marginal cost to the output gap to finish the job.

- Relate the reset price to real inflation with the time t and time t + k reset prices.
- By studying real marginal cost with a *t* + *k* reset, we're getting towards thinking about natural output.

• Recall from lecture 7 that nominal total cost was given as

$$TC(Y) = W\left(\frac{Y}{A}\right)^{\frac{1}{1-c}}$$

 Follows that the linearised expression for real mc at t + k with time t reset is

$$\widehat{mc}_{t,t+k}^{r} = \widehat{mc}_{t,t+k} - \hat{p}_{t+k}$$
$$= \hat{w}_{t+k} - \hat{p}_{t+k} - \frac{1}{1-\alpha} \left(\hat{a}_{t+k} - \alpha \hat{y}_{t,t+k} \right)$$

 Follows that the linearised expression for real mc at t + k with time t + k reset is

$$\widehat{mc}_{t+k}^{r} = \widehat{mc}_{t+k} - \hat{p}_{t+k}$$
$$= \hat{w}_{t+k} - \hat{p}_{t+k} - \frac{1}{1-\alpha} \left(\hat{a}_{t+k} - \alpha \hat{y}_{t+k} \right)$$

• The difference can then be written as

$$\widehat{mc}_{t,t+k}^{r} - \widehat{mc}_{t+k}^{r} = \frac{\alpha}{1-\alpha} (\hat{y}_{t,t+k} - \hat{y}_{t+k})$$
(9)

• We can then express the demand curve for a given firm as

$$\hat{\mathbf{y}}_{t,t+k} = -\epsilon(\hat{p}_t^* - \hat{p}_{t+k}) + \hat{\mathbf{y}}_{t+k}$$
(10)

• Substitute equation (10) into (9) to obtain

$$\widehat{mc}_{t,t+k}^{r} = \widehat{mc}_{t+k}^{r} - \frac{\epsilon\alpha}{1-\alpha}(\hat{p}_{t}^{*} - \hat{p}_{t+k})$$
(11)

• Then substitute equation (11) into (8) to get

where $\Theta \equiv \frac{1-\alpha}{1-\alpha(1-\epsilon)}$. So we have an equation relating the optimal reset price to real marginal cost and future prices.

Inflation and Future Inflation

- Next we want to relate inflation to real marginal cost and expected inflation.
- Using equation (12), see that

$$\hat{\rho}_{t}^{*} = (1 - \theta\beta)\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} (\theta\beta)^{k} \left[\Theta\widehat{mc}_{t+k}^{r} + \hat{\rho}_{t+k}\right]\right\}$$
(13)
$$= (1 - \theta\beta)\left[\Theta\widehat{mc}_{t}^{r} + \hat{\rho}_{t}\right] + (1 - \theta\beta)\mathbb{E}_{t}\left\{\sum_{k=1}^{\infty} (\theta\beta)^{k}\left[\Theta\widehat{mc}_{t+k}^{r} + \hat{\rho}_{t+k}\right]\right\}$$
$$= (1 - \theta\beta)\left[\Theta\widehat{mc}_{t}^{r} + \hat{\rho}_{t}\right] + \theta\beta\mathbb{E}_{t}[\hat{\rho}_{t+1}^{*}]$$

Inflation and Future Inflation

• Now subtract \hat{p}_{t-1} from either side of (13) to yield

$$\begin{aligned} \hat{\rho}_{t}^{*} - \hat{\rho}_{t-1} &= (1 - \theta\beta) \left[\Theta \widehat{mc}_{t}^{r} + \hat{\rho}_{t} \right] + \theta\beta \mathbb{E}_{t} [\hat{\rho}_{t+1}^{*}] - \hat{\rho}_{t-1} \quad (14) \\ &= (1 - \theta\beta) \Theta \widehat{mc}_{t}^{r} + (1 - \theta\beta) \hat{\rho}_{t} + \theta\beta \mathbb{E}_{t} [\hat{\rho}_{t+1}^{*}] - \hat{\rho}_{t-1} \\ &= (1 - \theta\beta) \Theta \widehat{mc}_{t}^{r} + \theta\beta \mathbb{E}_{t} [\hat{\rho}_{t+1}^{*} - \hat{\rho}_{t}] + \hat{\rho}_{t} - \hat{\rho}_{t-1} \\ &= (1 - \theta\beta) \Theta \widehat{mc}_{t}^{r} + \theta\beta \mathbb{E}_{t} [\hat{\rho}_{t+1}^{*} - \hat{\rho}_{t}] + \hat{\pi}_{t} \\ \Rightarrow \frac{1}{1 - \theta} \hat{\pi}_{t} = (1 - \theta\beta) \Theta \widehat{mc}_{t}^{r} + \theta\beta \frac{1}{1 - \theta} \mathbb{E}_{t} [\hat{\pi}_{t+1}] + \hat{\pi}_{t} \\ \Rightarrow \hat{\pi}_{t} = (1 - \theta)(1 - \theta\beta) \Theta \widehat{mc}_{t}^{r} + \theta\beta \mathbb{E}_{t} [\hat{\pi}_{t+1}] + (1 - \theta) \hat{\pi}_{t} \\ \Rightarrow \theta \hat{\pi}_{t} = (1 - \theta)(1 - \theta\beta) \Theta \widehat{mc}_{t}^{r} + \theta\beta \mathbb{E}_{t} [\hat{\pi}_{t+1}] \end{aligned}$$

sometimes papers leave it here...

Output Gap

- ...it's more typical to relate real marginal cost to the output gap though. Why would we do this in practice?
- Marginal cost is something that's less observable than output.

Output Gap and Real Marginal Cost

- The measure of the natural level of output comes from the flexible price equilibrium.
- Why? Recall that the model is linearised around the zero inflation steady state.
- This corresponds to the flexible price long-run solution.
- Finding this is just back to the imperfect competition model from a few lectures ago, (but now with dynamics).

Output Gap and Real Marginal Cost: Flexible Prices

• Household labour supply

$$N_t^{\varphi} C_t^{\sigma} = \frac{W_t}{P_t} \tag{15}$$

Price setting

$$(1-\alpha)A_tN_t^{-\alpha} = \frac{\epsilon}{\epsilon - 1}\frac{W_t}{P_t}$$
(16)

Resource constraint

$$Y_t = C_t = A_t N_t^{1-\alpha} \tag{17}$$

Output Gap and Real Marginal Cost: Flexible Prices

• Combining equations (15) and (16) yields

$$N_t^{\varphi} C_t^{\sigma} = \frac{\epsilon - 1}{\epsilon} (1 - \alpha) A_t N_t^{-\alpha}$$
(18)

- Equations (17) and (18) summarise the flexible price system.
- Exercise: we can obtain the log-linearised natural level of output as

$$\hat{y}_t^n = \frac{1+\varphi}{(1-\alpha)\sigma + \alpha + \varphi} \hat{a}_t$$
(19)

...this form makes a lot of sense. Why?

• LRAS depends only on productivity (or productive capacity)!

Real Marginal Cost and Natural Output

- We need to relate y_t^n to real marginal cost somehow.
- Notice that $MC_t^r = \frac{W_t}{P_t} \frac{1}{1-\alpha} \frac{1}{A_t} N_t^{\alpha}$, which means that

$$\widehat{mc}_{t}^{r} = \widehat{w}_{t} - \widehat{p}_{t} - \widehat{a}_{t} + \alpha \widehat{n}_{t}$$

$$= \varphi \widehat{n}_{t} + \sigma \widehat{c}_{t} - \widehat{a}_{t} + \alpha \widehat{n}_{t}$$

$$= \frac{(1 - \alpha)\sigma + \alpha + \varphi}{1 - \alpha} \widehat{y}_{t} - \frac{1 + \varphi}{1 - \alpha} \widehat{a}_{t}$$
(20)

where the second line comes from the labour supply condition (15) $(\hat{w}_t - \hat{p}_t = \sigma \hat{c}_t + \varphi \hat{n}_t)$ and the third comes from the production function $(\hat{y}_t = \hat{a}_t + (1 - \alpha)\hat{n}_t)$.

Real Marginal Cost and Natural Output

• Notice then that from (19)

$$\hat{y}_{t}^{n} = \frac{1+\varphi}{(1-\alpha)\sigma + \alpha + \varphi} \hat{a}_{t}$$

$$= \frac{1+\varphi}{1-\alpha} \frac{1-\alpha}{(1-\alpha)\sigma + \alpha + \varphi} \hat{a}_{t}$$

$$\Rightarrow \frac{1+\varphi}{1-\alpha} \hat{a}_{t} = \frac{(1-\alpha)\sigma + \alpha + \varphi}{1-\alpha} \hat{y}_{t}^{n} \qquad (21)$$

Real Marginal Cost and Natural Output

• Utilising equations (21) and (20) then yields

$$\widehat{mc}_t^r = \frac{(1-\alpha)\sigma + \alpha + \varphi}{1-\alpha}(\hat{y}_t - \hat{y}_t^n)$$
(22)

• Substitute (22) into the last line of (14) to get the new Keynesian Phillips curve

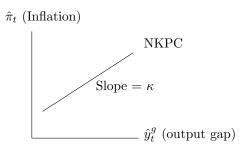
$$\hat{\pi}_t = \beta \mathbb{E}_t [\hat{\pi}_{t+1}] + \kappa \hat{y}_t^g$$

where $\kappa \equiv \frac{(1-\alpha)\sigma + \alpha + \varphi}{1-\alpha} \frac{(1-\theta)(1-\theta\beta)\Theta}{\theta}$ is the slope term and $\hat{y}_t^g = \hat{y}_t - \hat{y}_t^n$

is the output gap.

New Keynesian Phillips Curve

Notice that κ > 0.



where the expectation term can be interpreted as a shifter of the curve

Roadmap

Derivation of Linearised Pricing

Conclusion

- Why did we do all this?
- It's one of the three key equations for the new Keynesian model.
- But this was super elegant. Did you see how neatly the math mapped into the qualitative Keynesian model from L2?
- That's the idea behind this model: mathematical rigour while preserving intuitive economic ideas.
- It's what this discipline should be all about.