
Topic 1
Solving Representative Agent Partial Equilibrium

Models

Adam Hal Spencer

The University of Nottingham

Applied Computational Economics

Introduction Spencer (Nottingham)

Roadmap

1 Introduction

2 Sequence Problems

3 Theory of Dynamic Programming

4 Value Function Iteration

5 Grid Search

6 Randomness

7 Interpolation

8 Conclusion

Introduction Spencer (Nottingham)

Outline

Three lectures that focus on dynamic model solving.

The schedule is as follows:

(1) Theory of dynamic programming and how to implement it on a
computer. Application to solving partial equilibrium models with
representative agents.

(2) Solving representative agent models in general equilibrium,

(3) Solving heterogeneous agent models with idiosyncratic uncertainty.

1 / 92

Introduction Spencer (Nottingham)

Outline

Today we’ll look at the theory of dynamic programming.

Then move on to how to implement it on a computer.

All talk about lots of numerical recipes you can use to this end.

I’m containing all of this to one lecture so we can move right on to
more interesting stuff in the next class.

2 / 92

Introduction Spencer (Nottingham)

Markets v.s. Social Planners

The bulk of this course will focus on solving models of market
economies, (i.e. decentralised economies).

As opposed to solving social planner’s problems, (centralised
economies).

Market economies have the more interesting stuff: we can think
about policy changes and the like.

3 / 92

Sequence Problems Spencer (Nottingham)

Roadmap

1 Introduction

2 Sequence Problems

3 Theory of Dynamic Programming

4 Value Function Iteration

5 Grid Search

6 Randomness

7 Interpolation

8 Conclusion

Sequence Problems Spencer (Nottingham)

Sequence Problems

Consider a consumption-savings problem for a household who owns a
capital stock

max
tct ,kt�1u8t�0

8̧

t�0

βt c
1�σ
t

1� σ

subject to their budget constraints and law of motion for capital

ct � kt�1 � p1� δqkt � rkt (1)

kt�1 ¥ 0 @t (2)

k0 given

where r is the return to saving exogenous to the household.

4 / 92

Sequence Problems Spencer (Nottingham)

Sequence Problems

Assume r is a constant for today.

Partial equilibrium — we won’t determine r in equilibrium — see the
next topic.

5 / 92

Sequence Problems Spencer (Nottingham)

Solving Sequence Problems

We can solve the problem using a Lagrangian

L �
8̧

t�0

βt c
1�σ
t

1� σ
�

8̧

t�0

λtrrkt � ct � kt�1 � p1� δqkts

First order conditions (with respect to the controls)

BL

Bct
� 0ñ βtc�σ

t � λt � 0

BL

Bkt�1
� 0ñ �λt � rλt�1tr � p1� δqus � 0

6 / 92

Sequence Problems Spencer (Nottingham)

Solving Sequence Problems

Combine the two FOCs to get the inter-temporal Euler equation

c�σ
t � β

�
c�σ
t�1tr � p1� δqu

�
(3)

7 / 92

Sequence Problems Spencer (Nottingham)

Solving Sequence Problems

The solution to the sequence problem is an infinite sequence
tc�t , k

�
t�1u

8
t�0 such that

(i) k0 and r are given exogenously,

(ii) The resource constraint (1) is satisfied @t,

(iii) The inter-temporal Euler equation (3) is satisfied @t,

(iv) The transversality condition is satisfied.

Condition (iii) is a necessary condition for the solution.

Conditions (i) and (iv) are boundary conditions for the sequence
problem.

ñ They pin-down the right solution.

8 / 92

Sequence Problems Spencer (Nottingham)

Solving Sequence Problems

What’s the issue here?

We have an infinite sequence to compute!

No matter how sophisticated it may be, a computer can’t solve an
infinite dimensional problem.

Is there any hope...?

9 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Roadmap

1 Introduction

2 Sequence Problems

3 Theory of Dynamic Programming

4 Value Function Iteration

5 Grid Search

6 Randomness

7 Interpolation

8 Conclusion

Theory of Dynamic Programming Spencer (Nottingham)

Recursive Formulation

An alternative approach to using a Lagrangian is to use a recursive
formulation in conjunction with the Envelope theorem.

All about state variables.

A state variable totally describes the state of a dynamic system at a
given time period.

10 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Value Function

The value function gives us the value of the objective at the optimal
solution to the problem, (for the given state).

For our consumption-savings problem, with initial state pk0q, the
value function V pk0q is

V pk0q �
8̧

t�0

βt pc
�
t q

1�σ

1� σ

where tc�t , k
�
t�1u

8
t�0 solves the sequence problem.

It’s just our objective with the optimal solution plugged-in.

11 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Recursive Formulation

Heuristically, see that

V pk0q � max
tct ,kt�1u8t�0

8̧

t�0

βt c
1�σ
t

1� σ

� max
tc0,k1u

c1�σ
0

1� σ
� max

tct ,kt�1u8t�1

8̧

t�1

βt c
1�σ
t

1� σ

� max
tc0,k1u

c1�σ
0

1� σ
� βrV pk1qs

where the β comes out the front since the value function at t � 1
doesn’t have the period utility discounted.

12 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Recursive Formulation

The recursive formulation [starting at time t � 0] for the social
planner’s problem above is given as

V pk0q � max
tc0,k1u

c1�σ
0

1� σ
� βrV pk1qs

subject to

c0 � k1 � p1� δqk0 � rk0

This setup is referred to as a Bellman equation or a functional
equation.

13 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Recursive Formulation

What does this problem say?

If you tell me your initial state, k0, this formulation tells you the value
associated with all your future decisions.

Notice that at period t � 1, we’ll have a new state k1.

Then the Bellman equation tells me the value V pk1q.

The problem is the same every period for this infinite-horizon
problem.

The only thing that matters is the state k!

14 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Recursive Formulation

The problem is the same every period

V pkq � max
tc,k 1u

c1�σ

1� σ
� βrV pk 1qs

subject to

c � k 1 � p1� δqk � rk

where variables with 1 superscripts denote next period’s variables.

15 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Recursive Formulation

The solution to this problem will be given by functions V pkq, k 1pkq
and cpkq.

The latter two are known as policy functions.

Notice again that they are time invariant.

Tell me the current state and I’ll tell you the optimal control variables.

16 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Solution

What can we do with this thing?

One option: sub-in the constraint and take derivatives

BV pkq

Bk 1
� 0ñ p�1qpcq�σ � β

�
BV pk 1q

Bk 1

�
� 0

Issue: we don’t know what BV pk 1q
Bk 1 is!

Envelope theorem to the rescue.

17 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Envelope Theorem

The Envelope Theorem says that

BV pkq

Bk
�

B

Bk

"
c1�σ

1� σ
� βrV pk 1qs

*

�
B

Bk

"
rrk � p1� δqk � k 1s1�σ

1� σ
� βrV pk 1qs

*

� c�σrr � p1� δqs

i.e. just look for the places where k features and take the derivative:
no need to worry about functions of k .

18 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Envelope Theorem

We can then iterate forwards by one period

BV pk 1q

Bk 1
� pc 1q�σrr � p1� δqs

19 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Euler Equation

Combine the updated envelope condition with the FOC for capital to
get

c�σ � β

pc 1q�σrr � p1� δqs

(

which is our standard Euler equation!

But this isn’t that useful!

We’re right back to where we were with the sequence problem.

20 / 92

Theory of Dynamic Programming Spencer (Nottingham)

More on the Value Function

We’re so used to taking derivatives in these problems.

In deriving the Euler equation using the Envelope theorem, we
haven’t made much use of the value function itself.

The value function turns-out to be a special object.

Can we go further using this object V pkq?

Bellman equations turn out to be contraction mappings.

We can leverage this in taking these equations to a computer.

Did you pay attention in real analysis class as an undergrad?

21 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

Definition 1: a metric space is a set S together with a metric
ρ : S � S Ñ R� such that for all x , y , z P S

ρpx , yq ¥ 0 with ρpx , yq � 0 ðñ x � y .

ρpx , yq � ρpy , xq,

ρpx , zq ¤ ρpx , yq � ρpy , zq

which are often called the properties of positivity, symmetry and the
triangle inequality.

You can think of ρpx , yq as being like a distance measure between
points in the set S .

22 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

x

y

z

ρ(x, y) > 0
S

23 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences: Symmetry

x

y

z

ρ(y, x) > 0
S

24 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences: Triangle Inequality

x

y

z

ρ(x, y) > 0
S

ρ(x, z) > 0

ρ(z, y) > 0

25 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

Definition 2: a sequence txnu
8
n�0 in S converges to x P S if, for each

ϵ ¡ 0, DNϵ P N such that

ρpxn, xq ϵ

for all n ¥ Nϵ.

After a certain point, we can trap the sequence inside an
arbitrarily-small ball.

26 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S
x

x1

x2

x3

x4

x5

x6

27 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S
x

x1

x2

x3

x4

x5

x6

ǫ1

28 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S
x

x1

x2

x3

x4

x5

x6

ǫ2 < ǫ1

29 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S
x

x1

x2

x3

x4

x5

x6

ǫ3 < ǫ2

30 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

Definition 3: a sequence txnu
8
n�0 in S is a Cauchy sequence if for

each ϵ ¡ 0, DNϵ P N such that

ρpxn, xmq ϵ

for all n,m ¥ Nϵ with n,m P N.

Points in the sequence are getting closer and closer.

31 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

x1

x2

x3

x4

x5

x6

32 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

x1

x2

x3

x4

x5

x6
ǫ1 > 0

33 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

x1

x2

x3

x4

x5

x6

ǫ2 < ǫ1

34 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

x1

x2

x3

x4

x5

x6

ǫ3 < ǫ2

35 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

Sequence txnu
8
n�0 P S convergent ñ txnu

8
n�0 P S is Cauchy.

36 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

Sequence txnu
8
n�0 P S is Cauchy ÷ txnu

8
n�0 P S convergent.

E.g. xn �
1
n for n P N and S � p0, 1s since 0 R S .

37 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S
x �∈ S

x1

x2

x3

x4

x5

38 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

Definition 4: a metric space pS , ρq is complete if every Cauchy
sequence in S converges to a point in S .

39 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

Definition 5: let pS , ρq be a metric space and T : S Ñ S be a
function mapping S into itself. T is a contraction mapping with
modulus β if for β P p0, 1q,

ρpTx ,Tyq ¤ βρpx , yq

for all x , y P S .

The function brings points closer and closer together.

40 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

x

y

ρ(x, y) > 0

41 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

x

y

Tx

Ty
ρ(Tx, Ty) < ρ(x, y)

42 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Contraction Mapping Theorem

Theorem 1 (Contraction Mapping Theorem): if pS , ρq is a
complete metric space and T : S Ñ S is a contraction mapping with
modulus β P p0, 1q, then

T has exactly one fixed point V P S such that V � TV .

For any V0 P S , ρpT nV0,V q βnρpV0,V q with n � 0, 1, 2, ...

Proof: ask Omar or Giammario in your theory classes!

A sequence of successive applications of the function to a point brings
us closer and closer to the unique fixed point.

43 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

V0

V

44 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

TV0

V

45 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

T
2
V0

V

46 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

S

T
n
V0

V

47 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences

So far we’ve looked at points in a set.

Let’s generalise now to talk about functions.

48 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Contraction Mapping Theorem

Theorem 2 (Blackwell’s Sufficient Conditions): let X � Rl and
BpX q be the space of bounded functions V : X Ñ R with the sup
norm. Let T : BpX q Ñ BpX q be an operator satisfying

(Monotonicity): let V ,W P BpX q, if V pxq ¤W pxq for all x P X then
TV pxq ¤ TW pxq,

(Discounting): there exists some constant β P p0, 1q such that for all
V P BpX q and a ¥ 0, we have

T pV � aq ¤ TV � βa

then T is a contraction with modulus β.

Where note that the sup norm is defined as

||f ||8 � supt|f pxq| : x P X u

49 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences: Monotonicity

x

V (x)

W (x)

x0 x1

50 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences: Monotonicity

x

V (x)

W (x)

x0 x1

TW (x)

TV (x)

51 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences: Discounting

x

V (x)

x0 x1

V (x) + a

T [V (x) + a]

TV (x) + βa

52 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences: Discounting

x

V (x)

x0 x1

V (x) + a

T [V (x) + a]

TV (x) + βa

53 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences: Discounting

x

V (x)

x0 x1

V (x) + a

T [V (x) + a]

TV (x) + βa

54 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Metric Spaces and Sequences: Sup Norm

x

V (x)

x0 x1

||f ||∞ = sup{|f(x)| : x ∈ [x0, x1]}

55 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Contraction Mapping Theorem

How does this help us?

Our beloved Bellman equation turns-out to be a contraction mapping.

56 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Contraction Mapping Theorem

Recall our value function looked like

V pkq � max
k 1

c1�σ

1� σ
� βrV pk 1qs

where c � rk � k 1 � p1� δqk .

Let’s define the operator T as

pTV qpkq � max
k 1

rrk � k 1 � p1� δqks1�σ

1� σ
� βrV pk 1qs

Want to know if T is a contraction and does there exist a V unique
such that V pkq � pTV qpkq.

57 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Contraction Mapping Theorem

Monotonicity: consider V ,W such that V pkq ¤W pkq for all k .

Want to show that pTV qpkq ¤ pTW qpkq.

Denote k̃ the optimal investment (k’) for the V functional.

Follows then that

pTV qpkq �
rrk � k̃ � p1� δqks1�σ

1� σ
� βrV pk̃qs

¤
rrk � k̃ � p1� δqks1�σ

1� σ
� βrW pk̃qs

¤ max
k 1

rrk � k 1 � p1� δqks1�σ

1� σ
� βrW pk 1qs

� pTW qpkq

meaning that the Bellman equation is monotonic.
58 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Contraction Mapping Theorem

Discounting: consider a functional V and a positive constant a.

See that

pT pV � aqqpkq � max
k 1

rrk � k 1 � p1� δqks1�σ

1� σ
� βrV pk 1q � as

� max
k 1

rrk � k 1 � p1� δqks1�σ

1� σ
� βrV pk 1qs � βa

� pTV qpkq � βa

meaning that the discounting property is satisfied.

59 / 92

Theory of Dynamic Programming Spencer (Nottingham)

Contraction Mapping Theorem

FYI: the space of bounded functions with the sup norm is complete.

Since the Bellman equation is a contraction, its fixed point is unique.

We still have no analytical solution for V pkq.

We can leverage the fact that the Bellman equation is a contraction
to solve for V pkq numerically.

60 / 92

Value Function Iteration Spencer (Nottingham)

Roadmap

1 Introduction

2 Sequence Problems

3 Theory of Dynamic Programming

4 Value Function Iteration

5 Grid Search

6 Randomness

7 Interpolation

8 Conclusion

Value Function Iteration Spencer (Nottingham)

Value Function Iteration

Recall the second point from the contraction mapping theorem.

If we start with some point in the metric space and keep applying the
contraction, the sequence of iterates will eventually converge to the
fixed point.

Our primary object of interest in the consumption-savings model is
the set of policy functions — k 1pkq, cpkq — they tell us how to best
allocate our resources.

If we first solve for the value function, we can find these policy
functions from the Bellman equation.

61 / 92

Value Function Iteration Spencer (Nottingham)

Value Function Iteration

The general procedure is:

1. Start with a guess for your value function, V0pkq.

2. Update your guess in the Bellman equation

V1pkq � max
c,k 1

c1�σ

1� σ
� βV0pk

1q

where c � rk � k 1 � p1� δqk . That is — take V0pk
1q as the true value

function for next period and then optimise over k 1, c . This gives you a
new value function V1pkq.

3. Keep doing this

Vn�1pkq � max
c,k 1

c1�σ

1� σ
� βVnpk

1q (4)

where c � rk � k 1 � p1� δqk until convergence.

62 / 92

Value Function Iteration Spencer (Nottingham)

Convergence

Recall that we we’re dealing with a metric space here.

Where a metric “measures the distance” between objects in the
space.

We can utilise the metric to see how close two points in the sequence
of iterates, Vn�1pkq and Vnpkq are!

When this distance is sufficiently small, we’ve approximately achieved
convergence.

63 / 92

Value Function Iteration Spencer (Nottingham)

Convergence

Utilise the sup norm

||Vn�1 � Vn||8 � supt|Vn�1pkq � Vnpkq| : k P Ru

This norm, (a special type of metric), finds the biggest discrepancy in
values between successive iterates.

Keep on iterating until the “biggest difference” gets sufficiently small.

64 / 92

Value Function Iteration Spencer (Nottingham)

Convergence

If I’ve done my job correctly, you’ll see the following (rather than
faces of loved ones), on your deathbed...

65 / 92

Value Function Iteration Spencer (Nottingham)

Convergence

66 / 92

Grid Search Spencer (Nottingham)

Roadmap

1 Introduction

2 Sequence Problems

3 Theory of Dynamic Programming

4 Value Function Iteration

5 Grid Search

6 Randomness

7 Interpolation

8 Conclusion

Grid Search Spencer (Nottingham)

Discretisation

Everything I say probably makes intuitive sense.

How do you actually do it when you’re sitting-down at your computer
screen?

The starting point is called grid search.

67 / 92

Grid Search Spencer (Nottingham)

Discretisation

Recall that our state and control variables were over the space R.

We want to iterate several times on the Bellman equation.

Notice that doing this as per equation (4) actually requires optimising
at each iteration.

That is: to find Vn�1pkq, we need to optimise over k 1 using Vnpkq on
the right-hand side.

How do we do this? R is a large set to be optimising over...

68 / 92

Grid Search Spencer (Nottingham)

Discretisation

Postulate an upper-bound for capital, denoted k̄.

“Chop-up” the interval r0, k̄s into M discrete increments.

This will leave you with a set k � t0,k1,k2,k3, ..., k̄u.

Just search over that set!

E.g. if I come into the world with state k5, what choice from set k
will maximise my value?

69 / 92

Grid Search Spencer (Nottingham)

Discretisation

What should your guess for k̄ be?

This is all partial equilibrium today: k̄ will just be arbitrary in the
problem set.

There are tricks you can use to guess a good upper-bound for k when
r is endogenous: we’ll discuss next topic.

70 / 92

Randomness Spencer (Nottingham)

Roadmap

1 Introduction

2 Sequence Problems

3 Theory of Dynamic Programming

4 Value Function Iteration

5 Grid Search

6 Randomness

7 Interpolation

8 Conclusion

Randomness Spencer (Nottingham)

Stochastic Problems

Everything we’ve considered so far has been deterministic.

How do we implement solutions to problems with stochastic
variables?

Our partial equilibrium model: assume rt is exogenous and
time-varying.

71 / 92

Randomness Spencer (Nottingham)

Stochastic Problems

Consider the social planner’s problem from the stochastic
consumption-savings problem.

max
tct ,kt�1u8t�0

E0

8̧

t�0

βt c
1�σ
t

1� σ

subject to their resource constraints and law of motion for capital

ct � kt�1 � p1� δqkt � rtkt

logprtq� ρr logprt�1q � ϵr ,t , ϵr ,t � Np0, 1q

kt�1 ¥ 0 @t

k0, r0 given

72 / 92

Randomness Spencer (Nottingham)

Stochastic Problems

Quantitative macro is obsessed with this AR(1) process.

Consider a general stochastic process

yt � µp1� ρq � ρyt�1 � ϵt , ϵt � Np0, σ2q (5)

This is a process for a continuous variable.

Again, we can discretise this process, just like we did with the state
space for capital.

73 / 92

Randomness Spencer (Nottingham)

Stochastic Problems

Take the continuous stochastic process and convert it into a discrete
Markov process.

How many gridpoints do we want to approximate (5) with?

E.g. say we approximate with two gridpoints — high or low (denote
them by yt P ty

L, yHu).

74 / 92

Randomness Spencer (Nottingham)

Stochastic Problems

A Markov process in this case would be a transition matrix of the form

Q �

�
qLL qLH
qHL qHH

�
(6)

where

qLL � qLH � 1

qHL � qHH � 1.

The rows correspond to the period t state and columns are for t � 1
state.

Probability of staying in current state plus probability of moving to
the other sums to unity.

75 / 92

Randomness Spencer (Nottingham)

Stochastic Problems

How do we discretise (i.e. move from equation (5) to (6))?

Two predominant approaches: Tauchen (1986) and Adda & Cooper
(2003).

The former chops the distribution for yt up into equal interval
lengths, while the latter instead looks at areas.

76 / 92

Randomness Spencer (Nottingham)

Adda & Cooper (2003) AR(1) Approximation

We’ll follows the Adda & Cooper (2003) approach.

The procedure is:

(1) Discretise process into N P N intervals,

(2) Get the conditional mean of each interval (discretised yt values),

(3) Find the conditional transition probability of moving from one interval
to the next, (transition matrix).

See the recipe appendix slides for the procedure.

77 / 92

Randomness Spencer (Nottingham)

Adda & Cooper (2003) AR(1) Approximation

The end result is a vector y⃗ (size N � 1) of discretised yt values and a
transition matrix Q (size N � N).

How can we use this now?

78 / 92

Randomness Spencer (Nottingham)

Stochastic Model

The recursive formulation of the stochastic consumption-savings
model is given by

V pk , rq � max
tc,k 1u

c1�σ

1� σ
� βEr rV pk

1, r 1qs

subject to

c � k 1 � p1� δqk � rk

logprq � ρr logpr�1q � ϵr , ϵr � Np0, 1q

The interest rate variable is a new state now, (r� denotes last
period’s rate).

The process for r is now summarised by our discretised vector and
transition matrix.

The expectation is over r 1 conditional on stochastic state r .
79 / 92

Randomness Spencer (Nottingham)

Deterministic Value Function

V (k)

k

V (k, zL)
V (k)

80 / 92

Randomness Spencer (Nottingham)

Stochastic Value Function

V (k, r)

k

V (k, rL)

V (k, rH)

81 / 92

Randomness Spencer (Nottingham)

Stochastic Model

How does the stochastic problem differ from the deterministic
problem computationally?

We need to account for the additional state, (an extra loop in the
code).

Our AR(1) discretisation process gives a vector of interest rate values
r⃗ and transition matrix Q.

We also need to crunch a sum in the Bellman equation for the
expectation.

82 / 92

Randomness Spencer (Nottingham)

Stochastic Model

The definition of the expectation for the discretised r variable

Er rV pk
1, r 1qs �

Ņ

i�1

qpr , r 1 � ri qV pk
1, r 1 � ri q

where the stochastic state is discretised to N � 1 vector r⃗ and
qpr , r 1 � ri q is the transition probability from current state r to ri
next period from the N � N matrix Q.

83 / 92

Randomness Spencer (Nottingham)

Stochastic Value Function Iteration

The general procedure is:

1. Start with a guess for your value function, V0pk , rq.

2. Update your guess in the Bellman equation

V1pk , rq � max
c,k1

c1�σ

1� σ
� βEr rV0pk

1, r 1qs

where c � rk � k 1 � p1� δqk . See that

Er rV0pk
1, r 1qs �

Ņ

i�1

qpr , r 1 � ri qV0pk
1, r 1 � ri q

where the current state is r . That is: compute the expectation
assuming that the initial guess is the true value function.

3. Keep doing this

Vn�1pk , rq � max
c,k 1

c1�σ

1� σ
� βEr rVnpk

1, r 1qs

where c � rk � k 1 � p1� δqk until convergence.
84 / 92

Interpolation Spencer (Nottingham)

Roadmap

1 Introduction

2 Sequence Problems

3 Theory of Dynamic Programming

4 Value Function Iteration

5 Grid Search

6 Randomness

7 Interpolation

8 Conclusion

Interpolation Spencer (Nottingham)

Functional Approximations

So far we’ve been discretising everything.

Means that we’ll know the values of some function at a bunch of
discrete points along an interval.

What do we do if we need to know the value of the function at an
arbitrary point outside of this grid?

E.g. between two of our gridpoints.

85 / 92

Interpolation Spencer (Nottingham)

Piecewise Linear Interpolation

Most basic application of this idea is to approximate a function using
lines.

Say we know tyi � f pxi qu
N
i�1 at some discrete set of points txiu

N
i�1.

We can then construct an approximation that equals each of these
evaluated points at the cut-offs, but assumes a linear form in all the
intervals in between.

86 / 92

Interpolation Spencer (Nottingham)

Piecewise Linear Interpolation

yi

xi

x1 x2 x3 x4 x5

y1

y2

y3

y4

y5

87 / 92

Interpolation Spencer (Nottingham)

Piecewise Linear Interpolation

yi

xi

x1 x2 x3 x4 x5

y1

y2

y3

y4

y5

88 / 92

Interpolation Spencer (Nottingham)

Piecewise Linear Interpolation

Construct a function

lpxqrxi ,xi�1spxq � Ai pxqyi � p1� Ai pxqqyi�1

where

Ai pxq �
xi�1 � x

xi�1 � xi
.

Ai pxq measures how far along the interval rxi , xi�1s the point x is.

89 / 92

Interpolation Spencer (Nottingham)

Piecewise Linear Interpolation

See that

lpxqrxi ,xi�1spxi q � Ai pxi qyi � p1� Ai pxi qqyi�1

� yi

and

lpxqrxi ,xi�1spxi�1q � Ai pxi qyi � p1� Ai pxi qqyi�1

� yi�1.

I.e. it hits the cut-offs exactly and is a linear combination for all the
points in between.

90 / 92

Interpolation Spencer (Nottingham)

Piecewise Linear Interpolation

What does this process give us?

A continuous approximation to the value function.

Grid search only gives us the value function at the discrete points for
the state space.

We have an approximation for the value function for state values
between each of the discretised state values.

Simple approximation: just lines.

See recipe appendix for other approximation methods.

91 / 92

Conclusion Spencer (Nottingham)

Roadmap

1 Introduction

2 Sequence Problems

3 Theory of Dynamic Programming

4 Value Function Iteration

5 Grid Search

6 Randomness

7 Interpolation

8 Conclusion

Conclusion Spencer (Nottingham)

Takeaways

Dynamic programming.

All the tools for the next lab.

92 / 92

