
L1: Introduction

Adam Hal Spencer

The University of Nottingham

Essentials of Financial Economics 2020 Financial Decision-Making $(1^{st}$ Quarter)

Roadmap

2 Firms and Securities

Instructor

- Adam Spencer
 - No need for formalities: call me either Adam or Spencer.
- Assistant Professor of Economics (started here September 2018).
- Ph.D. Economics and Finance, M.S. Economics.
 - University of Wisconsin-Madison (USA).
- M.Econ. (Hons), B.Comm. (Hons) Economics.
 - The University of Melbourne (Australia).

My Part of the Module

- A course in financial decision-making.
- Similar to what you'd take in a U.S. M.B.A. degree.
- We'll use theories from corporate finance.
- But for the most part, we'll just use and not ask why?
- Spiros Bougheas' Corporate Finance Theory class will go into detail.

What is corporate finance?

- Say we have a project we want to fund.
- How do we fund it?
- Corporate finance is about deciding on the best source of funding for the project.
- Why does it matter: financial frictions.
- Not all sources of financing are equal!
- E.g. a failing firm with close to zero stock price is unlikely to issue more equity to fund new investments.

Examples of financial frictions

- Transaction costs: e.g. fees, transportation costs.
- Taxes.
- Moral hazard: managers may waste investors' money.
- Asymmetric information: investors may not know the same things that insiders know.
- Bankruptcy costs: may need lots of collateral to borrow.

Roadmap

Firms

- Firm is an organisation that sells goods or services to make a profit (Investopedia).
- Legal entity.
- Investment decisions: relate to real assets that are productive.
- Financing decisions: portfolio management, needed to fund the upfront cost of investments.
- Mismatch: some people have ideas and others have money.
- Financial frictions can make it hard to match entrepreneurs up with investors.

Objectives of the firm

- Firm's objective is to maximise the value of shareholders.
- Shareholders are the firm's owners.
- The firm issues several different claims to its cash flows.
 - E.g. shares, bonds, preferred shares, etc.
- Value is what the market is willing to pay for these different claims.

Cash flows and firms (1)

- Value of an investment project is determined by the cash flows it generates.
- We view firms as a collection of projects.
- Discounted cash flow (DCF) method of valuation.
- We treat cash flows from a firm like a financial security.
- Holders of different types of securities have different claims to the cash flows generated by the firm.

Cash flows and firms (2)

- Some different types of claims:
 - Equity (shares): a proportional claim.
 - Debt (loans): a fixed claim.
 - Options and other contingent claims: only given some of the cash flows under certain circumstances.
 - Hybrid claims: can be convertible from fixed to proportional claim or other.

Equity

- Ownership stake in the company.
- A person who owns $\alpha \in [0, 1]$ fraction of the firm's equity will receive fraction α of dividends paid.
 - E.g. if dividend D is paid-out then the investor will receive αD payment.
- Limited liability: the firm can never **force** the shareholders to give the firm more money.
- Equityholders are **junior** to debtholders.
 - Debtholders have first claim to the firm's cash flows.
 - Equity referred to as the **residual claimant**.
- An equityholder's cash flow is bounded below by zero: just like a **call option**, (to be seen in a moment).

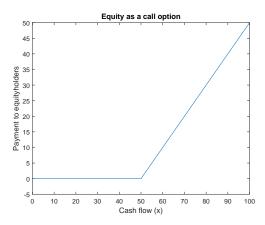
Debt

- Debtholders are the creditors of the firm.
- This is a blanket term that I'll use for all types of creditors: could be holder of the company's corporate bond, a bank, etc.
- The debtholder will loan the firm some money and receive the money back in the future with interest if the firm doesn't **default**.
- In the case of default, the debtholders take over control of the firm away from the equityholders.
- A company with a higher debt-to-equity ratio is considered to be riskier to new investors.
- Can have several debt instruments on issue with different degrees of seniority.

Preferred stock

- Are given a fixed payment like debtholders.
- Higher seniority than equity.
- Can be converted into common stocks.
- Usually have no voting rights.
- Logically a holder would convert when the firm is expected to generate high cash flows in future.

Bank of America 🐲


Other Stockholder Equity Total Stockholder Equity	(4,320,000) 243,471,000	(8,457,000) 232.685.000	(2,797,000) 236,956,000
Capital Surplus	-	-	-
Treasury Stock	-	-	-
Retained Earnings	75,024,000	72,497,000	62,843,000
Common Stock	153,458,000	155,293,000	158,142,000
Preferred Stock	19,309,000	13,352,000	18,768,000
Redeemable Preferred Stock	-		
Misc Stocks Options Warrants	-	-	-
Stockholders' Equity			

Other types of securities

- Call options: give the owner the right but not the obligation to **buy** shares at a certain price, (the strike price).
- Put options: give the owner the right but no the obligaton to **sell** shares at a certain price.
- Convertible bonds: similar to preference shares.

Equity as a call option

- Assume that a firm has debt with a face value of 50.
- It generates cash flows of x for the period.
- Assume it doesn't retain any earnings; just pays everything out to stakeholders.
- Equityholders (collectively) will receive max(0, x 50) for the period.


Summary of security types

- Firms will often have all of these types of securities on issue as well as other (strange) claims.
- Each help solve the issues associated with financial frictions in different ways.

Roadmap

Introduction to cash flows

- The amount of cash moving in/out of the firm.
- A main variable of interest for corporate finance; can be used by the firm to invest or remain solvent.
- Different from accounting items like net income.
 - You can't spend accounting earnings.
 - Ignores earnings that are yet to be received.
 - Cash flows are related to such accounting measures though.
- We treat a firm like a collection of **individual projects**.
- Cash flows arising from a project are treated like cash flows coming from a security, (e.g. a bond).

Time value of money

- Money today is not worth the same as money tomorrow!
- Consider receiving \$1 today. Say you can deposit that \$1 into a bank account and receive interest rate r% per year.
 - Will be worth \$(1+r) next year.
 - $1 \rightarrow (1+r)$.
- Now consider receiving \$1 next year.
 - Will be worth \$X today.
 - \$X ← \$1.
 - $X = \frac{1}{1+r}$.
 - If put $\frac{1}{1+r}$ into the bank account for one year, it will give us \$1 next year.
- Notice that $\frac{1}{1+r} < 1$, meaning that \$1 tomorrow is worth less than \$1 today.

Present value: first principles

• First principles definition of present value

$$PV_0 = C_0 + \frac{C_1}{1+r} + \frac{C_2}{(1+r)^2} + \dots + \frac{C_T}{(1+r)^T}$$
$$= \sum_{t=0}^T \frac{C_t}{(1+r)^t}$$

where C_t is the cash flow received at time t.

- T could be finite or infinite.
- When we assume that $C_t = C$ constant, we get a whole bunch of nice properties.

Present value: perpetuity

• Nice formula for an infinitely-received payment of C

$$PV_0 = \sum_{t=1}^{\infty} \frac{C}{(1+r)^t}$$

= $\frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots$
= $\frac{C}{r}$

Derivation

$$(1+r)PV_0 = (1+r)\left[\frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots\right]$$
$$= C + \frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots$$
$$\Rightarrow (1+r)PV_0 - PV_0 = C$$
$$\Rightarrow PV_0 = \frac{C}{r}$$

Present value: growing perpetuity

• Start with a payment of \$C tomorrow and grow forever at a rate of g.

$$PV_0 = \frac{C}{r-g}$$

• Derivation: exercise!

Present value: annuties

• Start with a payment of \$C tomorrow and receive it for T years.

$$PV_{0} = \sum_{t=1}^{T} \frac{C}{(1+r)^{t}}$$
$$= \frac{C}{r} \left[1 - \frac{1}{(1+r)^{T}} \right]$$

• Derivation: the difference of two perpetuities.

$$PV_{0} = \left[\frac{C}{1+r} + \dots + \frac{C}{(1+r)^{T}} + \dots\right] - \left[\frac{C}{(1+r)^{T+1}} + \dots\right]$$
$$= \frac{C}{r} - \frac{1}{(1+r)^{T}} \left[\frac{C}{1+r} + \dots + \frac{C}{(1+r)^{T}} + \dots\right]$$
$$= \frac{C}{r} - \frac{1}{(1+r)^{T}} \frac{C}{r}$$
$$= \frac{C}{r} \left[1 - \frac{1}{(1+r)^{T}}\right]$$

Present value: growing annuties

• Start with a payment of \$C tomorrow and receive it for T years; grows at rate g between years.

$$PV_0 = \sum_{t=1}^{T} \frac{C(1+g)^{t-1}}{(1+r)^t}$$
$$= \frac{C}{r-g} \left[1 - \frac{(1+g)^T}{(1+r)^T} \right]$$

• Derivation: same idea as with g = 0.

Inflation and discounting (1)

• A rise in the general price level in the economy.

- Nominal value in 1988 \$70,000 (AUD).
- Nominal value in 2020 \$1,025,000 (AUD).
- 1 AUD \approx 0.57 GBP (Sep. 2020).

Inflation and discounting (2)

- Real rate (r_r) : after removing inflation.
- Nominal rate (r_n) : unadjusted for inflation.
- The Fisher equation

$$(1 + r_n) = (1 + r_r)(1 + i)$$

- Must use real discount rate to discount real cash flows.
- Must use nominal discount rate to discount nominal cash flows.

Finance v.s. accounting (earnings v.s. cash flows)

- Net income is an accounting measure that can be manipulated.
 - E.g. not necessarily one correct way of writing-down depreciation expenses.
- Cash flows are less easy to manipulate.
 - Cash doesn't lie!
- Our approach will be to **start** with reported earnings and make certain adjustments until we get a measure of cash flows.

Defining cash flows (1)

- Main components of free cash flows:
 - Revenues, costs, investments and taxes.
- Depreciation is not a cash flow.
 - Affects taxes though, which are a cash flow.
- Assume for now that the firm is financed entirely with equity.
 - Means no interest expense yet.
- When evaluating a new project, we only care about **incremental** cash flows.
 - Rational agents only think at the margin.
 - Marginal benefit versus marginal cost.

Defining cash flows (2)

• Definition of cash flows (CF)

$$CF = (Revenue - Costs - Depreciation) \times (1 - \tau^{C}) + Depreciation - CapEX - \Delta NWC$$

$$= (Revenue - Costs) \times (1 - \tau^{C}) - CapEX - \Delta NWC + (\tau^{C}) \times Depreciation$$

- Notice I've **added** depreciation back into the earnings since it's not a cash flow.
- Net working capital (NWC) is basically a measure of liquid assets that the firm can use in the short-term.
 - E.g. you expect high demand for your product next week so you invest more in inventories cash outflow.

NWC = current assets - current liabilities

= inventories + accounts receivable - accounts payable

Defining cash flows (3)

• Consider the following example, (with no taxes or NWC).

Year	2016	2017	2018	
Revenues	0	550	550	
Costs	0	0	0	
Depreciation	0	500	500	
Net income	0	50	50	
CapEx	1000	0	0	
FCF	-1000	550	550	

- When would we see a scenario with **positive net income** yet **negative CF**?
 - Financial mismanagement (e.g. poor management of NWC).
 - Rapid growth, (e.g. lots of capital expenditures).

Income statement v.s. cash flow statement

- We can relate CF to earnings measures.
- $CF = EBIAT + Depreciation CapEx \Delta NWC$.
- EBIAT = (Revenues Costs Depreciation)x(1- τ^{C}).
- Net income = EBIAT (Interest)x(1- τ^{C}).

Costs

- CapEx (capital expenditures) versus OpEx (operating expenditures).
 - CapEx is investment spending on things that will generate us benefits in the future.
 - OpEx is incurred through day-to-day operations of the company; direct spending on things like wages, utilities or maintenance.
 - OpEx directly enters earnings expressions; CapEx does not.
- Selling, General and Administrative (SG&A).
 - Sales, management and administration costs.
 - Can be looked at as measure of corporate waste.

Sunk costs and decision making

- Sunk costs should be ignored!
- Your current and future decision-making doesn't affect these, so they shouldn't be taken into consideration.
- E.g. say you really want to go to a concert.
 - You bought your ticket days ago.
 - But you lost it!
 - It is annoying.
 - But if you really want to go, you should buy another ticket, (the lost ticket's purchase cost is sunk).
 - If you keep losing your ticket you should keep buying a new one!

Terminal value

- You're trying to evaluate a potential project.
- How do you treat the project at the horizon's end?
- Liquidation method: assumes that you will sell the project at the end; salvage value.
- **Perpetuity method:** assumes that the project will continue indefinitely; continuation value.

Liquidation method (1)

- You'll need an estimate of the project's resale value **after** the final forecast cash flow.
 - Can't sell the project before you're finished using it!
- The market value/selling price of the project relative to the accounting book value will have implications for taxes.
 - Selling price > book value \Rightarrow capital gains \Rightarrow positive taxes!
 - Selling price < book value \Rightarrow capital losses \Rightarrow negative taxes!
- Book value = purchase price accumulated depreciation

Liquidation method (2)

- Consider the following example.
 - Assume that the project initially cost \$200 in 2016.
 - Say the sale value is \$50.
 - Assume a corporate tax rate of 35%.

	2016	2017	2018	2019	2020
CF excluding terminal value	-200	70	70	70	70
Depreciation	0	4	4	4	4
Accumulated depreciation	0	4	8	12	16
Book value	200	196	192	188	184
Sale value	N/A	N/A	N/A	N/A	50
Tax obligations from termination	N/A	N/A	N/A	N/A	-46.9
Total CF	-200	70	70	70	166.9

- The tax obligation is found as $(0.35) \times (50 184)$.
- Total CF is CF excluding TV plus sale value minus tax obligations.

Perpetuity method (1)

- This method assumes that the project will continue forever into the future, (beyond the forecastable future).
- Often also referred to as continuation (rather than terminal) value.
- Our growing perpetuity formula comes in handy here!
- We can apply the growing perpetuity formula to the cash flows realised at the last period in our forecast model.

Perpetuity method (2)

- Consider the following example.
 - Assume that the project will grow at a rate of 2% per year from 2021 onwards.
 - Growth will be applied to incremental cash flows.
 - Assume 4% discount rate.

	2016	2017	2018	2019	2020
CF excluding terminal value	-200	70	70	70	70
Continuation value (CV)	N/A	N/A	N/A	N/A	3470
Total CF	-200	70	70	70	3640

- Continuation value = $\frac{70(1.02)}{0.04-0.02}$.
- Total CF = CF excluding TV + CV.
- The continuation value is usually incurred at the **end** of the final period in the forecast model as above.

Roadmap

Takeaways

- Cash flows are our main object of interest.
- They are not the same as accounting earnings.
- Only look at incremental cash flows.
- Ignore sunk costs.
- Terminal values can be found using liquidation or perpetuity methods.