FIN 325 Corporate Finance L1 (Techniques): Cash Flows and Present Value

Instructor: Adam Hal Spencer¹

Summer 2016

¹Departments of Economics and Finance, UW–Madison.

Introduction to cash flows

- The amount of cash moving in/out of the firm.
- A main variable of interest for corporate finance; can be used by the firm to invest or remain solvent.
- Different from accounting items like net income.
 - You can't spend accounting earnings.
 - Ignores earnings that are yet to be received.
 - Cash flows are related to such accounting measures though.
- We treat a firm like a collection of **individual projects**.
- Cash flows arising from a project are treated like cash flows coming from a security, (e.g. a bond).

Time value of money

- Money today is not worth the same as money tomorrow!
- Consider receiving \$1 today. Say you can deposit that \$1 into a bank account and receive interest rate r% per year.
 - Will be worth \$(1+r) next year.
 - $1 \rightarrow (1+r)$.
- Now consider receiving \$1 next year.
 - Will be worth \$X today.
 - $X \leftarrow 1.$
 - $X = \frac{1}{1+r}$.
 - If put $\frac{1}{1+r}$ into the bank account for one year, it will give us \$1 next year.
- Notice that $\frac{1}{1+r} < 1$, meaning that \$1 tomorrow is worth less than \$1 today.

Present value: first principles

• First principles definition of present value

$$PV_0 = C_0 + \frac{C_1}{1+r} + \frac{C_2}{(1+r)^2} + \dots + \frac{C_T}{(1+r)^T}$$
$$= \sum_{t=0}^T \frac{C_t}{(1+r)^t}$$

where C_t is the cash flow received at time t.

- T could be finite or infinite.
- When we assume that $C_t = C$ constant, we get a whole bunch of nice properties.

Present value: perpetuity

• Nice formula for an infinitely-received payment of C

$$PV_0 = \sum_{t=1}^{\infty} \frac{C}{(1+r)^t}$$

= $\frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots$
= $\frac{C}{r}$

Derivation

$$(1+r)PV_0 = (1+r)\left[\frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots\right]$$
$$= C + \frac{C}{1+r} + \frac{C}{(1+r)^2} + \frac{C}{(1+r)^3} + \dots$$
$$\Rightarrow (1+r)PV_0 - PV_0 = C$$
$$\Rightarrow PV_0 = \frac{C}{r}$$

• Start with a payment of \$C tomorrow and grow forever at a rate of g.

$$PV_0 = \frac{C}{r-g}$$

• Derivation: exercise!

Present value: annuties

• Start with a payment of \$C tomorrow and receive it for T years.

$$PV_{0} = \sum_{t=1}^{T} \frac{C}{(1+r)^{t}}$$
$$= \frac{C}{r} \left[1 - \frac{1}{(1+r)^{T}} \right]$$

• Derivation: the difference of two perpetuities.

$$PV_{0} = \left[\frac{C}{1+r} + \dots + \frac{C}{(1+r)^{T}} + \dots\right] - \left[\frac{C}{(1+r)^{T+1}} + \dots\right]$$
$$= \frac{C}{r} - \frac{1}{(1+r)^{T}} \left[\frac{C}{1+r} + \dots + \frac{C}{(1+r)^{T}} + \dots\right]$$
$$= \frac{C}{r} - \frac{1}{(1+r)^{T}} \frac{C}{r}$$
$$= \frac{C}{r} \left[1 - \frac{1}{(1+r)^{T}}\right]$$

• Start with a payment of \$C tomorrow and receive it for *T* years; grows at rate *g* between years.

$$egin{aligned} & \mathsf{PV}_0 = \sum_{t=1}^T rac{C(1+g)^{t-1}}{(1+r)^t} \ & = rac{C}{r-g} \left[1 - rac{(1+g)^T}{(1+r)^T}
ight] \end{aligned}$$

• Derivation: same idea as with g = 0.

Inflation and discounting (1)

• A rise in the general price level in the economy.

- Nominal value in 1988 \$70,000 (AUD).
- Nominal value in 2016 \$1,000,000 (AUD).
- 1 AUD \approx 0.72 USD (Feb. 2016).

Inflation and discounting (2)

- Real rate (r_r) : after removing inflation.
- Nominal rate (r_n) : unadjusted for inflation.
- The Fisher equation

$$(1 + r_n) = (1 + r_r)(1 + i)$$

- Must use real discount rate to discount real cash flows.
- Must use nominal discount rate to discount nominal cash flows.

- Net income is an accounting measure that can be manipulated.
 - E.g. not necessarily one correct way of writing-down depreciation expenses.
- Cash flows are less easy to manipulate.
 - Cash doesn't lie!
- Our approach will be to **start** with reported earnings and make certain adjustments until we get a measure of cash flows.

Defining cash flows (1)

- Main components of free cash flows:
 - Revenues, costs, investments and taxes.
- Depreciation is not a cash flow.
 - Affects taxes though, which are a cash flow.
- Assume for now that the firm is financed entirely with equity.
 - Means no interest expense yet.
- When evaluating a new project, we only care about incremental cash flows.
 - Rational agents only think at the margin.
 - Marginal benefit versus marginal cost.

Defining cash flows (2)

• Definition of cash flows (CF)

$$\begin{aligned} \mathsf{CF} &= (\mathsf{Revenue} - \mathsf{Costs} - \mathsf{Depreciation}) \times (1 - \tau^{\mathsf{C}}) + \mathsf{Depreciation} \\ &- \mathsf{CapEX} - \Delta\mathsf{NWC} \\ &= (\mathsf{Revenue} - \mathsf{Costs}) \times (1 - \tau^{\mathsf{C}}) - \mathsf{CapEX} - \Delta\mathsf{NWC} + \\ &(\tau^{\mathsf{C}}) \times \mathsf{Depreciation} \end{aligned}$$

- Notice I've **added** depreciation back into the earnings since it's not a cash flow.
- Net working capital (NWC) is basically a measure of liquid assets that the firm can use in the short-term.
 - E.g. you expect high demand for your product next week so you invest more in inventories cash outflow.

NWC = current assets - current liabilities

= inventories + accounts receivable - accounts payable

Defining cash flows (3)

• Consider the following example, (with no taxes or NWC).

Year	2016	2017	2018
Revenues	0	550	550
Costs	0	0	0
Depreciation	0	500	500
Net income	0	50	50
CapEx	1000	0	0
FCF	-1000	550	550

- When would we see a scenario with positive net income yet negative CF?
 - Financial mismanagement (e.g. poor management of NWC).
 - Rapid growth, (e.g. lots of capital expenditures).

- We can relate CF to earnings measures.
- $CF = EBIAT + Depreciation CapEx \Delta NWC$.
- EBIAT = (Revenues Costs Depreciation)x(1- τ^{C}).
- Net income = EBIAT (Interest)x(1- τ^{C}).

Costs

- CapEx (capital expenditures) versus OpEx (operating expenditures).
 - CapEx is investment spending on things that will generate us benefits in the future.
 - OpEx is incurred through day-to-day operations of the company; direct spending on things like wages, utilities or maintenance.
 - OpEx directly enters earnings expressions; CapEx does not.
- Selling, General and Administrative (SG&A).
 - Sales, management and administration costs.
 - Can be looked at as measure of corporate waste.

Sunk costs and decision making

- Sunk costs should be **ignored**!
- Your current and future decision-making doesn't affect these, so they shouldn't be taken into consideration.
- E.g. say you really want to go to Freakfest.
 - You bought your ticket days ago.
 - But you lost it!
 - It is annoying.
 - But if you really want to go, you should buy another ticket, (the lost ticket's purchase cost is sunk).
 - If you keep losing your ticket you should keep buying a new one!

- You're trying to evaluate a potential project.
- How do you treat the project at the horizon's end?
- Liquidation method: assumes that you will sell the project at the end; salvage value.
- **Perpetuity method:** assumes that the project will continue indefinitely; continuation value.

Liquidation method (1)

- You'll need an estimate of the project's resale value **after** the final forecast cash flow.
 - Can't sell the project before you're finished using it!
- The market value/selling price of the project relative to the accounting book value will have implications for taxes.
 - Selling price > book value \Rightarrow capital gains \Rightarrow positive taxes!
 - Selling price < book value \Rightarrow capital losses \Rightarrow negative taxes!
- Book value = purchase price accumulated depreciation

Liquidation method (2)

- Consider the following example.
 - Assume that the project initially cost \$200 in 2016.
 - Say the sale value is \$50.
 - Assume a corporate tax rate of 35%.

	2016	2017	2018	2019	2020
CF excluding terminal value	-200	70	70	70	70
Depreciation	0	4	4	4	4
Accumulated depreciation	0	4	8	12	16
Book value	200	196	192	188	184
Sale value	N/A	N/A	N/A	N/A	50
Tax obligations from termination	N/A	N/A	N/A	N/A	-46.9
Total CF	-200	70	70	70	166.9

- The tax obligation is found as $(0.35) \times (50 184)$.
- Total CF is CF excluding TV plus sale value minus tax obligations.

- This method assumes that the project will continue forever into the future, (beyond the forecastable future).
- Often also referred to as continuation (rather than terminal) value.
- Our growing perpetuity formula comes in handy here!
- We can apply the growing perpetuity formula to the cash flows realised at the last period in our forecast model.

Perpetuity method (2)

- Consider the following example.
 - Assume that the project will grow at a rate of 2% per year from 2021 onwards.
 - Growth will be applied to incremental cash flows.
 - Assume 4% discount rate.

	2016	2017	2018	2019	2020
CF excluding terminal value	-200	70	70	70	70
Continuation value (CV)	N/A	N/A	N/A	N/A	3470
Total CF	-200	70	70	70	3640

- Continuation value = $\frac{70(1.02)}{0.04-0.02}$.
- Total CF = CF excluding TV + CV.
- The continuation value is usually incurred at the **end** of the final period in the forecast model as above.

- Cash flows are our main object of interest.
- They are not the same as accounting earnings.
- Only look at incremental cash flows.
- Ignore sunk costs.
- Terminal values can be found using liquidation or perpetuity methods.
- House prices in Melbourne are damn expensive!