
Topic 1
Appendix B: the Need for Speed

Adam Hal Spencer

The University of Nottingham

Applied Computational Economics



Introduction Spencer (Nottingham)

Roadmap



Introduction Spencer (Nottingham)

Outline

Value function iteration with a basic grid search is super simple and
reliable.

It can be slow though.

Keep increasing the size of your state space: the curse of
dimensionality.

How can we speed things up?

1 / 1



Introduction Spencer (Nottingham)

Outline

Here are three things you can do.

They vary in the amount of time it takes to learn/implement.

(1) Quick fix acceleration methods.

(2) Longer-term fix: learn a faster programming language.

(3) Longer-longer-term fix: supercomputers.

2 / 1



Quick Fixes Spencer (Nottingham)

Roadmap



Quick Fixes Spencer (Nottingham)

Howard’s Improvement Algorithm

What is it that makes VFI slow?

Always optimising!

Can we optimise less and leverage the contraction mapping property
more?

3 / 1



Quick Fixes Spencer (Nottingham)

Howard’s Improvement Algorithm

Idea: we only update the policy functions (optimise) occasionally.

Just plug our current estimate of the policy function into the Bellman
equation and let it contract! Keep iterating!

Say that we’re trying to solve the problem

vpxq � max
x 1PX

upx � x 1q � βvpx 1q

4 / 1



Quick Fixes Spencer (Nottingham)

Howard’s Improvement Algorithm

Make an initial guess for the value function as usual v0pxq.

(a) Discretise the state space X into txiu
N
i�1 gridpoints.

(b) Solve the Bellman equation for one run as you would in grid search

v1pxi q � max
x 1Ptxiu

N
i�1

upxi � x 1q � βv0px
1q

where you’ll do this for each i � 1, ...,N. Denote the optimal choice
function x 1 � gpxi q, which you have computed numerically.

5 / 1



Quick Fixes Spencer (Nottingham)

Howard’s Improvement Algorithm

(c) Iterate K times now without optimising. Run:

ṽkpxi q � upxi � gpxi qq � βṽk�1px
1q

for ṽ1px
1q � v1px

1q and k � 2, ...,K . Then re-optimise

v2pxi q � max
x 1Ptxiu

N
i�1

upxi � x 1q � βṽK px
1q

and repeat step (c) again with ṽ1px
1q � v2px

1q.

K P N is something you need to choose.

I.e. after how many runs on the contraction do I re-update the policy
function?

Time between re-optimises of the policy function is longer, but fewer
re-updates.

6 / 1



Quick Fixes Spencer (Nottingham)

Exploiting Monotonicity

Under certain conditions, (that are usually met in these models), the
optimal policy function x 1pxq is monotonic.

Means we can restrict our set of possible choices!

E.g. what’s the policy choice x 1pxi q: the optimal choice for current
state xi?

Search over the set txi , xi�1, xi�2, ..., xNu rather than
tx1, x2, ..., xi , xi�1, ..., xNu.

7 / 1



Longer-Term Fixes: New Languages Spencer (Nottingham)

Roadmap



Longer-Term Fixes: New Languages Spencer (Nottingham)

Other Languages

I was instructed to teach you Matlab or Julia here in this course.

They’re (probably) most widely-used languages amongst economists.

That’s fine, but when you have a problem with large dimensionality,
you switch to Fortran.

8 / 1



Longer-Term Fixes: New Languages Spencer (Nottingham)

Fortran

Fortran stands for Formula Translation.

It’s super old: created in 1957.

It’s a fu$*ing beast though when it comes to numerical computing.

9 / 1



Longer-Term Fixes: New Languages Spencer (Nottingham)

Fortran

My advisor at UW-Madison, during the first lecture of our
Computational Methods class said:

Learn Fortran this weekend. It’ll be the the worst weekend of your
life. But it’ll make the rest of your life infinitely easier (Corbae,
2014).

10 / 1



Longer-Term Fixes: New Languages Spencer (Nottingham)

Fortran

What’s the problem?

This language is super old, so debugging is absolutely terrifying.

It can take hours to track-down one simple mistake.

Much harder to de-bug than Matlab.

But check this out...

11 / 1



Longer-Term Fixes: New Languages Spencer (Nottingham)

Fortran

Aruoba and Fernandez-Villaverde (2018) solved the neoclassical
growth dynamic programming problem several times in several
different programming languages...

12 / 1



Longer-Term Fixes: New Languages Spencer (Nottingham)

Fortran

13 / 1



Longer-Term Fixes: New Languages Spencer (Nottingham)

Fortran

Julia is good, but Fortran destroys almost everything but C++.

But it’s hard to get the hang of 100%.

You should only invest in Fortran if you want to do macro or other
stuff that involves lots of state variables.

For most people, Matlab is fine.

14 / 1



Longer-Longer-Term Fixes: Supercomputers Spencer (Nottingham)

Roadmap



Longer-Longer-Term Fixes: Supercomputers

Supercomputers

There are two types of supercomputing:

High performance computing.

High throughput computing.

15 / 1



Longer-Longer-Term Fixes: Supercomputers

Supercomputers

The type you should use depends on the type of speed gains you
need. Ask the following question:

Can I break my problem-up into a thousand processes, without the
need for any of the processes to speak to each other at all?

If the answer is yes, you use high-throughput computing (and you’re
lucky for that matter).

If the answer is no, you use high performance computing.

16 / 1



Longer-Longer-Term Fixes: Supercomputers

Supercomputers

Examples:

My job market paper: I had three endogenous state variables. I had 60
cores that could divide-up my state space for the value function
iteration. The cores could optimise certain parts of the state space
then pool all their information at the end of each iteration. HPC.

Say you have a small problem and you want to calibrate your model.
You can divide-up your parameter space into 1000 pieces, evaluate
each set and calculate your SMM criterion function each time. Pick
the smallest criterion function set of parameters as your starting point
for the formal SMM procedure. HTC.

17 / 1



Longer-Longer-Term Fixes: Supercomputers

Supercomputers

HPC basically takes a bunch of cores and puts them together as if
they were one computer. All cores work on exactly the same job.

HTC in contrast takes the same job with some different parameters
(that you tell the submit node) and then they operate without
speaking to each other.

18 / 1



Longer-Longer-Term Fixes: Supercomputers

Supercomputers

Parellelising a problem in Matlab can be straightforward, (e.g. replace
the word “for“ in your loops with “parfor”: parallel for).

But since it’s commercial software, there will usually be a limit to the
number of cores you can use at once.

Again, Fortran is the king here.

Plus, since it’s so old, it is very easy to use on a cluster with
OpenMP, (or MPI).

There’s usually no limit on cores.

19 / 1



Longer-Longer-Term Fixes: Supercomputers

Supercomputers

Also: just to mention, more cores for HPC doesn’t always mean
faster.

E.g. 60 cores v.s. 2000. It takes time for them to pool all their
information: so you might lose-out in moving a lot.

20 / 1



Longer-Longer-Term Fixes: Supercomputers

Supercomputers

The time cost to using supercomputers comes from (1) it takes time
to get access to one, (I’ve never used the one here at Nottingham so
you’d need to look into it).

(2) These supercomputers all use command-line operating systems, so
you need to get used to that. Plus again, debugging is hard.

21 / 1



Longer-Longer-Term Fixes: Supercomputers

GPU Processing

I have played with this before.

I got it to work, but didn’t really see much in the way of speed gains,
(I guess I coded it inefficiently).

I’ve heard the gains are massive. But you need special graphics cards
to do it. Compatibility between software/graphics cards is again an
issue.

I believe C is the language most compatible with GPU processing, but
I don’t know this language.

I spent like two weeks straight on this and didn’t make much
progress: there’s not much in the way of documentation online, (or at
least in 2017 there wasn’t).

22 / 1



Summary Spencer (Nottingham)

Roadmap



Summary

Conclusion

Start with the basic single-core grid search, if it’s too slow, there are
options.

Varying degree of fixed costs to learn them though.

23 / 1


