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Instructor

@ Adam Spencer

e No need for formalities: call me either Adam or Spencer.

@ Assistant Professor of Economics (started here this September).

@ Ph.D. Economics and Finance, M.S. Economics.

o University of Wisconsin-Madison (USA).

M.Econ. (Hons), B.Comm. (Hons) Economics.

e The University of Melbourne (Australia).
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Summary

@ The material covered in this course will be tough!
@ You'll get exposure to lots of new things: may seem intimidating.

@ Look through all the math to see the intuition of models and
solutions.

@ This is not a math course!
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Note

@ These mathematical methods are just recipes that | want you to know
how to use.

@ Again, this is not a math course: these are just tools for doing
economics.
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Constrained Optimisation

@ “Economics is the study of how society manages its scarce resources”
(Mankiw, 2007, Principles of Economics).

@ Constrained optimisation!
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e (e
Static Program

@ A static optimisation program will have the following general form
max f(X,u) s.t. g(X,u) =~
X
where X is a vector of control variables and v are parameters.

@ This will have the following Lagrangian
L= f()_(a U) + )‘[fy - g()?a U)]

where A > 0 is called the Lagrange multiplier.

5/29



e (e
Static Program

@ Interior solution found by taking 8[: for all x; € X and and
equating the derivatives with zero (ﬁrst order condltlons).

e We'll focus just on interior solutions, (corner solutions require the use
of Kuhn-Tucker conditions).
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Static Optimisation Example

@ Solve the following consumption-leisure tradeoff problem:

Cl—a
maxXx
cn 1—o0

—xn

subject to ¢ = wn where w is taken as given.
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Spencer (Nottingham)
Static Optimisation Example Solution (1)

o Lagrangian given by
l1-o

l1—0

L=

—xn+ A[wn — ]

e First order conditions (FOCs) given by

oL

= A= 1
9c 0=c 0 (1)
oL
oL
a—OiWn—C—O (3)
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Static Optimisation Example Solution (2)

e Equations (1) and (2) imply

@ Plug (4) into (3) to get the solution for n as

= (2
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Dynamic Discrete Time Optimisation Spencer (Nottingham)

Discrete Time Deterministic Program

o Consider a problem of the form

o0
max Z f(Xe,u,t) sit. g(Xe,u, t) =7 VE>0

Xi
ot=0

where notice the time subscripts now. Why none on u?

@ Has the Lagrangian

L= f(Zut)+ > Ay — g(% v, t)]

t=0 t=0

where A\; > 0 are the Lagrange multipliers.
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Dynamic Discrete Time Optimisation Spencer (Nottingham)

Discrete Time Optimisation Example

@ Solve the following program

oo —
ctl"

max Bt t— —xn
{ct,ne,br 11372, tz—(:) |:]_ — 0 X t:|
for 5 € [0, 1] subject to the constraint

ptCt + qiby = br—1 + weny

where b; are discount bonds, (g: < 1) and the price sequences
{we, pt, qe }32, are taken as given.

@ Notice that the dynamics have an effect through savings, b;.
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Dynamic Discrete Time Optimisation Spencer (Nottingham)

Discrete Time Optimisation Example Solution (1)

@ Lagrangian given by

C
1—

l-0o

[’:iﬁt[ t
t=0

— XNt
o

|

oo
+ Z At[bt—1 + wene — prce — qeby
t=0

which comes with first order conditions

oL o

afct:OiﬁtCt —Atp: =0

oL

— =0=-B'"+X\w; =0

ant

oL

b, =0= —qtAe + Aty1=0

oL

v = 0= pict + qebr = br—1 + winy,
O\t



Dynamic Discrete Time Optimisation Spencer (Nottingham)

Discrete Time Optimisation Example Solution (2)

@ Recall that the price sequences are all taken as given (exogenous).

e Using (5) and (6) yields

oo X jct:( X ) (9)

M&/Pt W&/Pt

al=

e FOC (5) tells us that

_ B’

Pt

At (10)
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Dynamic Discrete Time Optimisation Spencer (Nottingham)

Discrete Time Optimisation Example Solution (3)

e Combining (7) and (10) yields

qtzﬁ(cf“)g P (11)

Ct Pt+1

which is referred to as a consumption Euler equation.

e Equations (11), (9) and (8) together summarise the solution to the
program.
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Dynamic Discrete Time Optimisation Spencer (Nottingham)

Discrete Time Optimisation Example Solution (4)

@ Solution to the program is given by a sequence {¢;, n¢, b }32, that
satisfies
—0
Ct+1 Pt
q: = f3 < >
Ct Pt+1

(5ey)
G =|—-—
Pt X

ptCt + qiby = be—1 + weny

together with initial condition b_; and “no ponzi game” restriction

t
Jim (L] b =0
J:

which says that the NPV of the “terminal” asset holdings are zero.
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Spencer (Nottingham)
Shocks

@ The examples we've looked at so far were all deterministic.
@ What happens when we add random shocks to the model?

@ Control variables will be a function of realised state of the world.
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SIS ERT VG IEM  Spencer (Nottingham)

Randomness and States of Nature

In this course, we'll assume that there is an information set that
evolves over time denoted by Z;.

In the future, there is some set of possible outcomes w; € Q.

All the agents in the model know the set € for the future, they just
don’t know what w; will come up.

Take expectations over the states and form state-contingent plans for
control variables.

E¢[x] is shorthand for E[x|Z;]
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Two Period Stochastic Model Example

@ Consider an optimal savings problem for a consumer over two periods
te{0,1}.

@ The consumer receives endowment of income y; in period t where
yt =y + €+ where E[e;] = 0.

@ Consumer maximises NPV of expected lifetime utility where period
-0
utility function is Cl’-‘i .

g

@ Assume that price of consumption in each period is unity and bond
price is fixed at qo.

@ Variables will all be functions of the state realised at decision time
wt € Q.
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Two Period Stochastic Model Example

@ The consumer is faced with the problem:

- co((wo))' ™

X ca((w)
co(wo),c1(w1),bo(wo) l1-0

1—0

+
subject to

co(wo) + gobo(wo) = yo(wo)
c1(w1) = bo(wo) + y1(w1)
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Two Period Stochastic Model Example Solution

@ Objective given by,

(yo(wo) 167_012)(wo))1_” L5 (bo(wo) 1+_)/10(W1))1_"

L =Eg

which is a function of only one control by from substituting out ¢
and ¢.

@ Optimality condition given by

dl

dbo 0 = goco(wo) ™7 = BEo[c; 7 (w1)]

which is a stochastic consumption Euler equation.

@ See that the optimal decision depends on the state realised at t = 0
and what's expected at t = 1.
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Two Period Stochastic Model Example Solution

Can we solve qoco(wo) ™ = BEo[c; 7 (w1)] for bo(wo) in closed form?

No! Either use numerical methods or local approximations.

@ As is canonical in monetary economics, we'll use lots of local
approximations through the log-linearisation technique.

@ Note: from now on, I'll drop the state scripts to ease notation (i.e. yp
rather than yo(wp)).
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e (e
Steady State

@ We reach a steady state when nothing is changing.
@ In the previous example, this is given by ¢; = 0 for each period.
o Thatis: yp=y1 =¥.

@ Other variables will be unchanging as well cg = ¢; = C.
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Steady State Example

@ In the steady state of the two-period model, see

qc 7 =B =q =7 (12)
=y —qobo (13)
cC=y+ bo. (14)

e For (12) — (14) to all hold, we need for no savings (i.e. by = 0)
between periods.

@ Follows that ¢ = y: consumption each period just equals the
deterministic endowment.
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Log-Linearisation

@ Approximates non-linear solutions around the steady state.

@ Define the log deviation of a variable (x;) from its steady state as

~ Xt
e = log (5
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Log-Linearisation

@ We can interpret X; as a percentage deviation of the variable from its

steady state as:
~ Xt
Xt = |Og <T>
X

:Iog(l—{—xt__X)
X

Xt — X .
=t + higher order terms
X

where the third line is a Taylor expansion.

o le. log(1l+ y) =y + higher order terms.
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Log-Linearisation

@ A first order Taylor expansion drops these higher-order terms.

@ So at a first order, we can approximate

Xt—)_(
Xt = = )
X

which says that X; is approximately a percentage deviation about the
steady state x.
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Log-Linearisation Example

@ Linearise the consumption Euler equation from the two period model:

gocy ” = BEolc; 7]

@ Assume that qq is a fixed parameter, as is 3.

@ ¢p and ¢; are endogenous and can deviate though.
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Log-Linearisation Example Solution

@ From our definition of the deviations, see that
G N
& = log (go) = ¢y = ce.
@ We can plug this into the Euler equation to get
qo(ce®) ™7 = BEo[(ce™) 7]
= qoC “e 7% = BT Ro[e Y]
= e 7% = Eole 9]

= (1 — 060) = Eo[(l — 061)]
= 60 = Eo[é\‘l]

where the third line comes from steady state equation (12) and the
fourth line comes from a first order Taylor expansion of exp(1 + x).
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Topics Covered

@ These mathematical techniques are just tools.

@ If you understand how to implement all these methods today, you'll
be good for the math in this first half of the course.
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