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Instructor

Adam Spencer

No need for formalities: call me either Adam or Spencer.

Assistant Professor of Economics (started here this September).

Ph.D. Economics and Finance, M.S. Economics.

University of Wisconsin-Madison (USA).

M.Econ. (Hons), B.Comm. (Hons) Economics.

The University of Melbourne (Australia).
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Summary

The material covered in this course will be tough!

You’ll get exposure to lots of new things: may seem intimidating.

Look through all the math to see the intuition of models and
solutions.

This is not a math course!
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Note

These mathematical methods are just recipes that I want you to know
how to use.

Again, this is not a math course: these are just tools for doing
economics.
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Constrained Optimisation

“Economics is the study of how society manages its scarce resources”
(Mankiw, 2007, Principles of Economics).

Constrained optimisation!
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Static Program

A static optimisation program will have the following general form

max
~x

f (~x , u) s.t. g(~x , u) = γ

where ~x is a vector of control variables and u are parameters.

This will have the following Lagrangian

L = f (~x , u) + λ[γ − g(~x , u)]

where λ ≥ 0 is called the Lagrange multiplier.
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Static Program

Interior solution found by taking ∂L
∂xi

for all xi ∈ ~x and ∂L
∂λ and

equating the derivatives with zero (first order conditions).

We’ll focus just on interior solutions, (corner solutions require the use
of Kuhn-Tucker conditions).
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Static Optimisation Example

Solve the following consumption-leisure tradeoff problem:

max
c,n

c1−σ

1− σ
− χn

subject to c = wn where w is taken as given.
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Static Optimisation Example Solution (1)

Lagrangian given by

L =
c1−σ

1− σ
− χn + λ[wn − c]

First order conditions (FOCs) given by

∂L
∂c

= 0⇒ c−σ − λ = 0 (1)

∂L
∂n

= 0⇒ −χ+ λw = 0 (2)

∂L
∂λ

= 0⇒ wn − c = 0 (3)
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Static Optimisation Example Solution (2)

Equations (1) and (2) imply

c−σ =
χ

w
⇒ c =

( χ
w

)− 1
σ

(4)

Plug (4) into (3) to get the solution for n as

n =
( χ
w

)− 1
σ
/w
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Discrete Time Deterministic Program

Consider a problem of the form

max
~xt

∞∑
t=0

f (~xt , u, t) s.t. g(~xt , u, t) = γt ∀t ≥ 0

where notice the time subscripts now. Why none on u?

Has the Lagrangian

L =
∞∑
t=0

f (~xt , u, t) +
∞∑
t=0

λt [γt − g(~xt , u, t)]

where λt ≥ 0 are the Lagrange multipliers.
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Discrete Time Optimisation Example

Solve the following program

max
{ct ,nt ,bt+1}∞t=0

∞∑
t=0

βt
[
c1−σt

1− σ
− χnt

]
for β ∈ [0, 1] subject to the constraint

ptct + qtbt = bt−1 + wtnt

where bt are discount bonds, (qt < 1) and the price sequences
{wt , pt , qt}∞t=0 are taken as given.

Notice that the dynamics have an effect through savings, bt .
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Discrete Time Optimisation Example Solution (1)

Lagrangian given by

L =
∞∑
t=0

βt
[
c1−σt

1− σ
− χnt

]
+
∞∑
t=0

λt [bt−1 + wtnt − ptct − qtbt ]

which comes with first order conditions

∂L
∂ct

= 0⇒ βtc−σt − λtpt = 0 (5)

∂L
∂nt

= 0⇒ −βtχ+ λtwt = 0 (6)

∂L
∂bt

= 0⇒ −qtλt + λt+1 = 0 (7)

∂L
∂λt

= 0⇒ ptct + qtbt = bt−1 + wtnt , (8)
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Discrete Time Optimisation Example Solution (2)

Recall that the price sequences are all taken as given (exogenous).

Using (5) and (6) yields

c−σt =
χ

wt/pt
⇒ ct =

(
χ

wt/pt

)− 1
σ

(9)

FOC (5) tells us that

λt =
βtc−σt

pt
(10)
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Discrete Time Optimisation Example Solution (3)

Combining (7) and (10) yields

qt = β

(
ct+1

ct

)−σ pt
pt+1

(11)

which is referred to as a consumption Euler equation.

Equations (11), (9) and (8) together summarise the solution to the
program.
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Discrete Time Optimisation Example Solution (4)

Solution to the program is given by a sequence {ct , nt , bt}∞t=0 that
satisfies

qt = β

(
ct+1

ct

)−σ pt
pt+1

ct =

(
wt

pt

1

χ

)σ
ptct + qtbt = bt−1 + wtnt

together with initial condition b−1 and “no ponzi game” restriction

lim
t→∞

 t∏
j=0

qj

 bt = 0

which says that the NPV of the “terminal” asset holdings are zero.
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Shocks

The examples we’ve looked at so far were all deterministic.

What happens when we add random shocks to the model?

Control variables will be a function of realised state of the world.
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Randomness and States of Nature

In this course, we’ll assume that there is an information set that
evolves over time denoted by It .

In the future, there is some set of possible outcomes ωi ∈ Ω.

All the agents in the model know the set Ω for the future, they just
don’t know what ωi will come up.

Take expectations over the states and form state-contingent plans for
control variables.

Et [x ] is shorthand for E[x |It ]
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Two Period Stochastic Model Example

Consider an optimal savings problem for a consumer over two periods
t ∈ {0, 1}.

The consumer receives endowment of income yt in period t where
yt = ȳ + εt where E[εt ] = 0.

Consumer maximises NPV of expected lifetime utility where period

utility function is c1−σ
t
1−σ .

Assume that price of consumption in each period is unity and bond
price is fixed at q0.

Variables will all be functions of the state realised at decision time
ωt ∈ Ω.
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Two Period Stochastic Model Example

The consumer is faced with the problem:

max
c0(ω0),c1(ω1),b0(ω0)

E0

[
c0((ω0))1−σ

1− σ
+ β

c1((ω1))1−σ

1− σ

]
subject to

c0(ω0) + q0b0(ω0) = y0(ω0)

c1(ω1) = b0(ω0) + y1(ω1)
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Two Period Stochastic Model Example Solution

Objective given by,

L = E0

[
(y0(ω0)− q0b0(ω0))1−σ

1− σ
+ β

(b0(ω0) + y1(ω1))1−σ

1− σ

]
which is a function of only one control b0 from substituting out c0
and c1.

Optimality condition given by

dL
db0

= 0⇒ q0c0(ω0)−σ = βE0[c−σ1 (ω1)]

which is a stochastic consumption Euler equation.

See that the optimal decision depends on the state realised at t = 0
and what’s expected at t = 1.
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Two Period Stochastic Model Example Solution

Can we solve q0c0(ω0)−σ = βE0[c−σ1 (ω1)] for b0(ω0) in closed form?

No! Either use numerical methods or local approximations.

As is canonical in monetary economics, we’ll use lots of local
approximations through the log-linearisation technique.

Note: from now on, I’ll drop the state scripts to ease notation (i.e. y0
rather than y0(ω0)).
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Steady State

We reach a steady state when nothing is changing.

In the previous example, this is given by εt = 0 for each period.

That is: y0 = y1 = ȳ .

Other variables will be unchanging as well c0 = c1 = c̄ .
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Steady State Example

In the steady state of the two-period model, see

q0c̄
−σ = βc̄−σ ⇒ q0 = β (12)

c̄ = ȳ − q0b0 (13)

c̄ = ȳ + b̄0. (14)

For (12) – (14) to all hold, we need for no savings (i.e. b0 = 0)
between periods.

Follows that c̄ = ȳ : consumption each period just equals the
deterministic endowment.
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Log-Linearisation

Approximates non-linear solutions around the steady state.

Define the log deviation of a variable (xt) from its steady state as

x̂t = log
(xt
x̄

)
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Log-Linearisation

We can interpret x̂t as a percentage deviation of the variable from its
steady state as:

x̂t = log
(xt
x̄

)
= log

(
1 +

xt − x̄

x̄

)
=

xt − x̄

x̄
+ higher order terms

where the third line is a Taylor expansion.

I.e. log(1 + y) ≈ y + higher order terms.
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Log-Linearisation

A first order Taylor expansion drops these higher-order terms.

So at a first order, we can approximate

x̂t =
xt − x̄

x̄
,

which says that x̂t is approximately a percentage deviation about the
steady state x̄ .
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Log-Linearisation Example

Linearise the consumption Euler equation from the two period model:

q0c
−σ
0 = βE0[c−σ1 ]

Assume that q0 is a fixed parameter, as is β.

c0 and c1 are endogenous and can deviate though.
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Log-Linearisation Example Solution

From our definition of the deviations, see that

ĉ0 = log
(c0
c̄

)
⇒ c0 = c̄e ĉ0 .

We can plug this into the Euler equation to get

q0(c̄e ĉ0)−σ = βE0[(c̄e ĉ1)−σ]

⇒ q0c̄
−σe−σĉ0 = βc̄−σE0[e−σĉ1 ]

⇒ e−σĉ0 = E0[e−σĉ1 ]

⇒ (1− σĉ0) = E0[(1− σĉ1)]

⇒ ĉ0 = E0[ĉ1]

where the third line comes from steady state equation (12) and the
fourth line comes from a first order Taylor expansion of exp(1 + x).
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Topics Covered

These mathematical techniques are just tools.

If you understand how to implement all these methods today, you’ll
be good for the math in this first half of the course.
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