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Adda & Cooper (2003) Discretisation Spencer (Nottingham)

Adda & Cooper (2003) AR(1) Approximation

We’ll follows the Adda & Cooper (2003) approach.

The procedure is:

(1) Discretise process into N P N intervals,

(2) Get the conditional mean of each interval (discretised yt values),

(3) Find the conditional transition probability of moving from one interval
to the next, (transition matrix).
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Adda & Cooper (2003) Discretisation Spencer (Nottingham)

Adda & Cooper (2003): Step (1)

Denote the limits of each of the N intervals of yt as
y1, y2, y3, ..., yN�1.

See that y1 � �8 and yN�1 � 8.
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Adda & Cooper (2003) Discretisation Spencer (Nottingham)

Adda & Cooper (2003): Step (1)

Cut-off points are then defined as (F denotes the normal CDF)

F

�
y i�1 � µ

σy



� F

�
y i � µ

σy



�

1

N

for i � 1, 2, ...,N and where

σ2y �
σ2

1 � ρ2

is the unconditional variance of yt . This all follows from the normality
of εt .
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Adda & Cooper (2003) Discretisation Spencer (Nottingham)

Adda & Cooper (2003): Step (1)

Working recursively, we can then write

y i � σyF
�1

�
i � 1

N



� µ
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Adda & Cooper (2003) Discretisation Spencer (Nottingham)

Adda & Cooper (2003): Step (2)

Denote the conditional mean of interval i as z i . See that

z i � Etyt |yt P ry i , y i�1su

�
1

N

1b
2πσ2y

» y i�1

y i

y exp

�
�ry � µs2

2σ2y



dy

� Nσy

�
f

�
y i � µ

σy



� f

�
y i�1 � µ

σy


�
� µ

where f is the normal distribution PDF.

The last line comes from changing variables and a lot of painful
manipulations.
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Adda & Cooper (2003) Discretisation Spencer (Nottingham)

Adda & Cooper (2003): Step (3)

Denote the transition probability then as πij where

πij � Prpyt P ry
j , y j�1s|yt�1 P ry

i , y i�1sq

�
Nb
2πσ2y

» y i�1

y i

exp

�
�ryt�1 � µs2

2σ2y



�

"
F

�
y j�1 � µp1 � ρqρyt�1

σ



� F

�
y j � µp1 � ρq � ρyt�1

σ


*
dyt�1

where you can use numerical integration to evaluate πij , (built-in
Matlab function).
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Interpolation

Cubic Splines

We’ve talked about linear interpolation in class.

We can take things up another level: approximate using cubic
functions.

Construct a function spxq such that spxi q � yi at each of the cut-offs
and on each connecting interval

srxi ,xi�1spxq � ai � bix � cix
2 � dix

3

meaning that we have N � 1 intervals and N datapoints.
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Interpolation

Cubic Splines

How do we identify all these coefficients in the approximation?

We have to deal with tai , bi , ci , diu
N�1
i�1 .

That is: 4pN � 1q unknowns.
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Interpolation

Cubic Splines

We have the cut-offs: provides us with 2pN � 1q equations:

y1 � srx1,x2spx1q for i � 1

srxi�1,xi spxi q � yi � srxi ,xi�1spxi q for i � 2, ..., pN � 1q

yN � srxN�1,xN spxNq for i � N

where notice that the middle line says that we want consistency on
either side of the non-endpoint cut-offs.
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Interpolation

Cubic Splines

So we still have 2pN � 1q equations to find.

What else can we do?

Impose continuity of the first and second derivatives.
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Interpolation

Cubic Splines

For the first derivative

s 1rxi�1,xi s
pxi q � s 1rxi ,xi�1s

pxi q

ñ bi�1 � 2ci�1xi � 3di�1x
2
i � bi � 2cixi � 3dix

2
i

for i � 2, ..., pN � 1q. For the second derivative

s2rxi�1,xi s
pxi q � s2rxi ,xi�1s

pxi q

ñ 2ci�1 � 6di�1xi � 2ci � 6dixi

for i � 2, ..., pN � 1q.
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Interpolation

Cubic Splines

Almost there. But we’re still missing two equations.

If we knew what the true function was — if we knew f 1px1q and
f 1pxNq, then we could impose

s 1rx1,x2spx1q � f 1px1q

s 1rxN�1,xN s
pxNq � f 1pxNq

but why are we approximating this function if we knew that? We
don’t generally.
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Interpolation

Cubic Splines

You could assume that

s 1rx1,x2spx1q � 0

s 1rxN�1,xN s
pxNq � 0

a bit arbitrary though, no?
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Interpolation

Cubic Splines

Could also use the first and final secants to approximate the first and
final derivatives

s 1rx1,x2spx1q �
srx1,x2spx2q � srx1,x2spx1q

x2 � x1

s 1rxN�1,xN s
pxNq �

srxN�1,xN spxNq � srxN�1,xN spxN�1q

xN � xN�1

Whatever you choose, the additional two points complete the system.

It’s a bunch of equations you can solve on the computer.
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Interpolation

The Need for Orthogonality

The space of continuous functions is spanned by monomials of the
form xn for n � 0, 1, 2, ....

But these things all start to look alike after a while: collinear.

Adding more an more of these things isn’t going to help us achieve a
better fit.

Enter: orthogonal polynomials.
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Interpolation

Orthogonal Polynomials

Orthogonality generalises the idea of perpendicular objects.

Two polynomials are orthogonal on some vector space if their inner
product is zero.

Inner products just generalise the idea of measuring angles between
vectors.
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Interpolation

Orthogonal Polynomials

If two polynomials are orthogonal, it means that their shapes do not
really resemble each other.

Exactly what we’re after with these approximation techniques:
overcomes the collinearity issue with monomials.

You can construct orthogonal polynomials using the Gram-Schmidt
procedure.

You can just Chebyschev polynomials: a special case.
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Interpolation

Chebyschev Polynomials

These are polynomials defined on the interval
Tn : r�1,�1s Ñ r�1,�1s that can be expressed recursively as

Tn�1pxq � 2xTnpxq � Tn�1pxq for n ¥ 2

where

T0pxq � 1

T1pxq � x .

See then that

T2pxq � 2x2 � 1

T3pxq � 2xp2x2 � 1q � x
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Interpolation

Chebyschev Polynomials: Implementation

Judd’s algorithm: choose m nodes and use them to construct a degree
n   m polynomial approximation of f pxq on the interval ra, bs.

(1) Compute the m ¥ n � 1 nodes on [-1,1].

zk � � cos

�
2k � 1

2m
π



for k � 1, ...,m

(2) Adjust the nodes to your interval ra, bs

xk � pzk � 1q

�
b � a

2



� a for k � 1, ...,m

(3) Evaluate the function at the approximation nodes

yk � f pxkq for k � 1, ...,m
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Interpolation

Chebyschev Polynomials: Implementation

(4) Compute the Chebyschev coefficients ci using

ci �

°m
k�1 ykTi pzkq°m
k�1 Ti pzkq2

for i � 0, 1, ..., n

to get your approximation given as

f̂ pxq �
ņ

i�0

ciTi

�
2
x � a

b � a
� 1
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Interpolation

Interpolation v.s. Grid Search Example

Consider a simple Bellman equation of the form

vpxq � max
x 1PX

upx � x 1q � βvpx 1q

where u is just some function.

What does it look like to implement grid search here relative to
interpolation methods?
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Interpolation

Example: Grid Search

Start by discretising the space X into txiu
N
i�1 where

x1   x2   ...   xN .

We have some N � 1 vector from the j th iteration.

For each xi , we aim to solve for v j�1 using

v j�1pxi q � max
x 1PX

upxi � x 1q � βv jpx 1q
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Interpolation

Example: Grid Search

The grid search algorithm is then of the form:

While supx |v
jpxq � v j�1pxq| ¡ ε,

Evaluate the vector of the form

V j�1
i �

�
���
upxi � x1q � βv jpx1q
upxi � x2q � βv jpx2q

...
upxi � xNq � βv jpxNq

�
���

for each i � 1, ...,N.

That is: for each gridpoint xi in the state space, compute this column
vector of numbers.

The optimal choice of x 1 for a given xi is the one that gives you the
largest number in vector V j�1

i .
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Interpolation

Example: Linear Interpolation

Utilise the same gridpoint setup, but now we have intervals

Interval Value v jpxq

x P rx1, x2s aj1,2 � bj1,2x

x P rx2, x3s aj2,3 � bj2,3x

... ...

x P rxN�1, xN s ajN�1,N � bjN�1,Nx

Then for each xi , we aim to solve for v�1 using

v j�1pxq � max
x 1Prx1,xN s

upxi � x 1q � βv jpx 1q

where see we are now looking at the entire interval rx1, xN s rather
than just in the set txiu

N
i�1.
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Interpolation

Example: Linear Interpolation

For the piecewise linear interpolation, the algorithm looks like the
following

While supx |v
jpxq � v j�1pxq| ¡ ε,

Use a maximisation routine to maximise V j�1
i where

V j�1
i �

�
����

upxi � x 1q � βraj1,2 � bj1,2x
1s for x 1 P rx1, x2s

upxi � x 1q � βraj2,3 � bj2,3x
1s for x 1 P rx2, x3s

...

upxi � x 1q � βrajN�1,N � bjN�1,Nx
1s for x 1 P rxN�1, xN s

�
����

call the minimised value v j�1pxi q.

With the new v j�1pxi q, recompute taj�1
i,i�1, b

j�1
i,i�1u

N�1
i�1 .
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Root-Finding Methods Spencer (Nottingham)

Non-Linear Equations

So many economic models look like the following

f px , yq � 0

where f is a function.

That is: Dy � gpxq such that

f px , gpxqq � 0 @x P X

E.g. an Euler equation.

Searching for some policy function gpxq of the current state x .
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Root-Finding Methods Spencer (Nottingham)

Bisection

Remember the Intermediate Value Theorem?

If we have a continuous function over some interval ra, bs and takes the
values f paq and f pbq at these points, then f pxq takes any value
between f paq and f pbq for x P ra, bs.

Bolzano’s Theorem:

If f paq and f pbq have opposite signs with f continuous on ra, bs, then
there must be a root such that f pxq � 0 for some x P ra, bs.
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Root-Finding Methods Spencer (Nottingham)

Bisection

f paq and f pbq with opposite signs...what does this mean in an
economic context?

Excess demand, anyone?

If the price is too high, then excess demand is negative.

If the price is too low, then excess demand is positive.
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Root-Finding Methods Spencer (Nottingham)

Bisection

Say we think f pxq is continuous on x P ra, bs.

Method of bisection follows the procedure

Guess x 1 such that x 1 � a�b
2 .

If f px 1q and f pbq have opposite signs, then replace a with x 1.

If f px 1q and f paq have opposite sings, then set b as x 1.

Repeat until |a� b|   ε.
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Root-Finding Methods Spencer (Nottingham)

Bisection

E.g. if EDppq is excess demand as a function of price p P ra, bs.

Set x 1 � a�b
2 then

Increase the price if EDppq ¡ 0: i.e. set a � x 1.

Decrease the price if EDppq   0: i.e. set b � x 1.
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Root-Finding Methods Spencer (Nottingham)

Bisection

Obviously many other procedures you can use.
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