Topic 1
Appendix A: Numerical Recipes

Adam Hal Spencer

The University of Nottingham

Applied Computational Economics

LG LERNCL LT PL) M IEATEEL Spencer (Nottingham)
Roadmap

© Adda & Cooper (2003) Discretisation

Spencer (Nottingham)
Adda & Cooper (2003) AR(1) Approximation

e We'll follows the Adda & Cooper (2003) approach.

@ The procedure is:
(1) Discretise process into N € N intervals,
(2) Get the conditional mean of each interval (discretised y; values),

(3) Find the conditional transition probability of moving from one interval
to the next, (transition matrix).

1/31

Spencer (Nottingham)
Adda & Cooper (2003): Step (1)

@ Denote the limits of each of the N intervals of y; as
yhyA vy

N+1 _

@ See that y! = —co and y 0.

2/31

Spencer (Nottingham)
Adda & Cooper (2003): Step (1)

o Cut-off points are then defined as (F denotes the normal CDF)

vl i
(75) o 50)
oy oy N

for i =1,2,...,N and where

2 o?

O'yzl_p2

is the unconditional variance of y;. This all follows from the normality
of €t.

3/31

Spencer (Nottingham)
Adda & Cooper (2003): Step (1)

@ Working recursively, we can then write

, 1
s of ()

4/31

Spencer (Nottingham)
Adda & Cooper (2003): Step (2)

@ Denote the conditional mean of interval i as z'. See that

z' = E{ytlyr ely',y™}

[y - u]z) dy

l+1
yexp<
N4 /27‘(‘0‘2 f 207
_ il
=t [() o (o)]
Oy Oy

where f is the normal distribution PDF.

@ The last line comes from changing variables and a lot of painful
manipulations.

5/31

Spencer (Nottingham)
Adda & Cooper (2003): Step (3)

@ Denote the transition probability then as 7;; where

mij = Pr(ye € [,y 1 € [y, vyt

N yl'+1 _ L 2
_ J exp< [)/t 12 /J] >><
2770}2, yi 2075

{,_- (yf“ —p(l - p)pyt—1> F (yf —p(l—p) - pyt—l) } dye s

g g

where you can use numerical integration to evaluate 7j;, (built-in
Matlab function).

6/31

ez (L)
Roadmap

© Interpolation

Cubic Splines

@ We've talked about linear interpolation in class.

@ We can take things up another level: approximate using cubic
functions.

e Construct a function s(x) such that s(x;) = y; at each of the cut-offs
and on each connecting interval

S[xi,xi+1] (X) = a; + bix + C,'X2 + d,'X3

meaning that we have N — 1 intervals and N datapoints.

7/31

Cubic Splines

@ How do we identify all these coefficients in the approximation?
e We have to deal with {a;, b;, ¢, d,-}f\’:_ll.

e That is: 4(N — 1) unknowns.

8/31

Cubic Splines

@ We have the cut-offs: provides us with 2(/N — 1) equations:

Y1 = S[q] (xa) for i =1
S[XFI’XI.] (X,') =Yy = S[Xi,Xi+1] (X,') for i = 2, ceey (N — 1)

YN = S[XNfl,XN] (XN) fOr i=N

where notice that the middle line says that we want consistency on
either side of the non-endpoint cut-offs.

9/31

Cubic Splines

@ So we still have 2(N — 1) equations to find.
@ What else can we do?

@ Impose continuity of the first and second derivatives.

10/31

Cubic Splines

@ For the first derivative

SEX,'_l,X,'] (XI) = SEXHXH—I] (XI)
= bj 1+ 2¢_1x + 3C/,',1X,-2 = b; + 2¢ix; + 3C/,'X,-2
for i =2,...,(N —1). For the second derivative

P11 () = S x12] ()

= 2¢;_1 + 6d;_1x; = 2¢; + 6d;x;

fori=2,...,(N—1).

11/31

Cubic Splines

@ Almost there. But we're still missing two equations.

@ If we knew what the true function was — if we knew f’(x;) and
f'(xn), then we could impose

sthxﬂ (x1) = f'(x1)
Sy) () = £

but why are we approximating this function if we knew that? We
don’t generally.

12/31

Cubic Splines

@ You could assume that

a bit arbitrary though, no?

13/31

Cubic Splines

@ Could also use the first and final secants to approximate the first and
final derivatives

S[x1,%] (X2) — S[x1,x2] (Xl)
X2 — X1
Sxn—1,%n] (XN) — Sxy—1,%n] (XN—l)

XN — XN-—1

Sfxl’XZ] (X]_) =

!/
Shav—1on] M) =
@ Whatever you choose, the additional two points complete the system.

@ It's a bunch of equations you can solve on the computer.

14/31

The Need for Orthogonality

@ The space of continuous functions is spanned by monomials of the
form x" forn=10,1,2,

@ But these things all start to look alike after a while: collinear.

@ Adding more an more of these things isn't going to help us achieve a
better fit.

@ Enter: orthogonal polynomials.

15/31

Interpolation

Orthogonal Polynomials

@ Orthogonality generalises the idea of perpendicular objects.

@ Two polynomials are orthogonal on some vector space if their inner
product is zero.

@ Inner products just generalise the idea of measuring angles between
vectors.

16/31

Interpolation

Orthogonal Polynomials

o If two polynomials are orthogonal, it means that their shapes do not
really resemble each other.

@ Exactly what we're after with these approximation techniques:
overcomes the collinearity issue with monomials.

@ You can construct orthogonal polynomials using the Gram-Schmidt
procedure.

@ You can just Chebyschev polynomials: a special case.

17/31

Chebyschev Polynomials

@ These are polynomials defined on the interval
Tn:[—1,+1] — [—1, +1] that can be expressed recursively as

Trt1(x) = 2xTp(x) — Tp—1(x) for n > 2

where
To(x) =1
Ti(x) = x.
@ See then that
To(x) =2x*> —1

Ta(x) = 2x(2x% — 1) — x

18/31

Interpolation

Chebyschev Polynomials: Implementation

@ Judd's algorithm: choose m nodes and use them to construct a degree
n < m polynomial approximation of f(x) on the interval [a, b].

(1) Compute the m = n+ 1 nodes on [-1,1].

2k —1
zk:—cos< 7T) for k=1,....m
2m

(2) Adjust the nodes to your interval [a, b]

Xk = (zx +1) (b2—a) +afor k=1,..,m

(3) Evaluate the function at the approximation nodes
yk =f(xk) for k=1,....m

19/31

Interpolation

Chebyschev Polynomials: Implementation

(4) Compute the Chebyschev coefficients ¢; using

_ 2y Y Tiz)
2= Ti(z)?

to get your approximation given as

fo) = aT; (22 :z . 1)
i=0

Gi for i=0,1,...,n

20/31

Interpolation

Interpolation v.s. Grid Search Example

o Consider a simple Bellman equation of the form
v(x) = max u(x — x') + Bv(x')

x'eX

where u is just some function.

@ What does it look like to implement grid search here relative to
interpolation methods?

21/31

Example: Grid Search

e Start by discretising the space X into {x;}.; where
X1 < Xp < ... <<XN-

@ We have some N x 1 vector from the j iteration.
@ For each x;, we aim to solve for v/ 11 using

Vitl(x) = max u(x; — xX') 4+ BV (X))

22/31

Example: Grid Search

@ The grid search algorithm is then of the form:
o While sup, |V/(x) — V7 1(x)| > ¢,
o Evaluate the vector of the form
u(xi —x1) + 5VJ:(X1)
Vitl = u(xi = x2) + Bv/ (x2)

u(xi — xn) + BV (xn)

foreachi=1,....N.

e That is: for each gridpoint x; in the state space, compute this column
vector of numbers.

e The optimal choice of x’ for a given x; is the one that gives you the

largest number in vector V/ ¥

23/31

Interpolation

Example: Linear Interpolation

o Utilise the same gridpoint setup, but now we have intervals

Interval Value v/(x)
X € [x1, %] o+ byox
X € [x2, x3] B3+ by 5x

x € [xn—1,xn] aj/v71,/v + ijfl,NX

@ Then for each x;, we aim to solve for v1 using

vVitl(x) = ’erF?X | u(xi — x') + BV (X))
x'€[x1,xn

where see we are now looking at the entire interval [xq, xy]| rather
than just in the set {x;}V ;.

24/31

Interpolation

Example: Linear Interpolation

@ For the piecewise linear interpolation, the algorithm looks like the
following
o While sup, |v/(x) — vV 71(x)| > ¢,

V'-i+1

77 where

o Use a maximisation routine to maximise

u(x; —x') + 5[34,2 + b{72x’] for x' € [x1, x2]
Vit = u(xi — x') + Blay 3 + by 3x'] for X' € [x2, x3]
u(x — x') + /3[31/.v71,/v + bl/.vq,/vxl] for x" € [xn_1,xn]

call the minimised value v/*1(x;).

: i1/, i+1 i+l N-1
o With the new v/*!(x;), recompute {2771, b/ 1 }iiy

25/31

ez (L)
Roadmap

© Root-Finding Methods

RGSANLTERVISALI B Spencer (Nottingham)

Non-Linear Equations

@ So many economic models look like the following
f(x,y) =0

where f is a function.

e That is: dy = g(x) such that
f(x,g(x)) =0VxeX

o E.g. an Euler equation.

@ Searching for some policy function g(x) of the current state x.

26 /31

Root-Finding Methods Spencer (Nottingham)

Bisection

@ Remember the Intermediate Value Theorem?

o If we have a continuous function over some interval [a, b] and takes the
values f(a) and f(b) at these points, then f(x) takes any value
between f(a) and f(b) for x € [a, b].

@ Bolzano’s Theorem:

e If f(a) and f(b) have opposite signs with f continuous on [a, b], then
there must be a root such that f(x) = 0 for some x € [a, b].

27/31

RGSANLTERVISALI B Spencer (Nottingham)

Bisection

f(a) and f(b) with opposite signs...what does this mean in an
economic context?

@ Excess demand, anyone?

If the price is too high, then excess demand is negative.

If the price is too low, then excess demand is positive.

28/31

RGSANLTERVISALI B Spencer (Nottingham)

Bisection

@ Say we think f(x) is continuous on x € [a, b].

@ Method of bisection follows the procedure

a+b

o Guess x” such that x’ = 2%

o If f(x’) and f(b) have opposite signs, then replace a with x’.
o If f(x') and f(a) have opposite sings, then set b as x'.

o Repeat until |a — b| < e.

29/31

RGSANLTERVISALI B Spencer (Nottingham)

Bisection

e E.g. if ED(p) is excess demand as a function of price p € [a, b].

@ Set x' = %b then

o Increase the price if ED(p) > 0: i.e. set a = x'.

o Decrease the price if ED(p) < 0: i.e. set b= x'.

30/31

RGSANLTERVISALI B Spencer (Nottingham)

Bisection

@ Obviously many other procedures you can use.

31/31

