Topic 1
 Appendix A: Numerical Recipes

Adam Hal Spencer

The University of Nottingham
Applied Computational Economics

Roadmap

(1) Adda \& Cooper (2003) Discretisation
(2) Interpolation

(3) Root-Finding Methods

Adda \& Cooper (2003) AR(1) Approximation

- We'll follows the Adda \& Cooper (2003) approach.
- The procedure is:
(1) Discretise process into $N \in \mathbb{N}$ intervals,
(2) Get the conditional mean of each interval (discretised y_{t} values),
(3) Find the conditional transition probability of moving from one interval to the next, (transition matrix).

Adda \& Cooper (2003): Step (1)

- Denote the limits of each of the N intervals of y_{t} as $y^{1}, y^{2}, y^{3}, \ldots, y^{N+1}$.
- See that $y^{1}=-\infty$ and $y^{N+1}=\infty$.

Adda \& Cooper (2003): Step (1)

- Cut-off points are then defined as (F denotes the normal CDF)

$$
F\left(\frac{y^{i+1}-\mu}{\sigma_{y}}\right)-F\left(\frac{y^{i}-\mu}{\sigma_{y}}\right)=\frac{1}{N}
$$

for $i=1,2, \ldots, N$ and where

$$
\sigma_{y}^{2}=\frac{\sigma^{2}}{1-\rho^{2}}
$$

is the unconditional variance of y_{t}. This all follows from the normality of ϵ_{t}.

Adda \& Cooper (2003): Step (1)

- Working recursively, we can then write

$$
y^{i}=\sigma_{y} F^{-1}\left(\frac{i-1}{N}\right)+\mu
$$

Adda \& Cooper (2003): Step (2)

- Denote the conditional mean of interval i as z^{i}. See that

$$
\begin{aligned}
z^{i} & =\mathbb{E}\left\{y_{t} \mid y_{t} \in\left[y^{i}, y^{i+1}\right]\right\} \\
& =\frac{1}{N} \frac{1}{\sqrt{2 \pi \sigma_{y}^{2}}} \int_{y^{i}}^{y^{i+1}} y \exp \left(\frac{-[y-\mu]^{2}}{2 \sigma_{y}^{2}}\right) d y \\
& =N \sigma_{y}\left[f\left(\frac{y^{i}-\mu}{\sigma_{y}}\right)-f\left(\frac{y^{i+1}-\mu}{\sigma_{y}}\right)\right]+\mu
\end{aligned}
$$

where f is the normal distribution PDF.

- The last line comes from changing variables and a lot of painful manipulations.

Adda \& Cooper (2003): Step (3)

- Denote the transition probability then as $\pi_{i j}$ where

$$
\begin{aligned}
\pi_{i j} & =\operatorname{Pr}\left(y_{t} \in\left[y^{j}, y^{j+1}\right] \mid y_{t-1} \in\left[y^{i}, y^{i+1}\right]\right) \\
& =\frac{N}{\sqrt{2 \pi \sigma_{y}^{2}}} \int_{y^{i}}^{y^{i+1}} \exp \left(\frac{-\left[y_{t-1}-\mu\right]^{2}}{2 \sigma_{y}^{2}}\right) \times \\
& \left\{F\left(\frac{y^{j+1}-\mu(1-\rho) \rho y_{t-1}}{\sigma}\right)-F\left(\frac{y^{j}-\mu(1-\rho)-\rho y_{t-1}}{\sigma}\right)\right\} d y_{t-1}
\end{aligned}
$$

where you can use numerical integration to evaluate $\pi_{i j}$, (built-in Matlab function).

Roadmap

(1) Adda \& Cooper (2003) Discretisation

(2) Interpolation

(3) Root-Finding Methods

Cubic Splines

- We've talked about linear interpolation in class.
- We can take things up another level: approximate using cubic functions.
- Construct a function $s(x)$ such that $s\left(x_{i}\right)=y_{i}$ at each of the cut-offs and on each connecting interval

$$
s_{\left[x_{i}, x_{i+1}\right]}(x)=a_{i}+b_{i} x+c_{i} x^{2}+d_{i} x^{3}
$$

meaning that we have $N-1$ intervals and N datapoints.

Cubic Splines

- How do we identify all these coefficients in the approximation?
- We have to deal with $\left\{a_{i}, b_{i}, c_{i}, d_{i}\right\}_{i=1}^{N-1}$.
- That is: $4(N-1)$ unknowns.

Cubic Splines

- We have the cut-offs: provides us with $2(N-1)$ equations:

$$
\begin{aligned}
y_{1} & =s_{\left[x_{1}, x_{2}\right]}\left(x_{1}\right) \text { for } i=1 \\
s_{\left[x_{i-1}, x_{i}\right]}\left(x_{i}\right) & =y_{i}=s_{\left[x_{i}, x_{i+1}\right]}\left(x_{i}\right) \text { for } i=2, \ldots,(N-1) \\
y_{N} & =s_{\left[x_{N-1}, x_{N}\right]}\left(x_{N}\right) \text { for } i=N
\end{aligned}
$$

where notice that the middle line says that we want consistency on either side of the non-endpoint cut-offs.

Cubic Splines

- So we still have $2(N-1)$ equations to find.
- What else can we do?
- Impose continuity of the first and second derivatives.

Cubic Splines

- For the first derivative

$$
\begin{aligned}
s_{\left[x_{i-1}, x_{i}\right]}^{\prime}\left(x_{i}\right) & =s_{\left[x_{i}, x_{i+1}\right]}^{\prime}\left(x_{i}\right) \\
\Rightarrow b_{i-1}+2 c_{i-1} x_{i}+3 d_{i-1} x_{i}^{2} & =b_{i}+2 c_{i} x_{i}+3 d_{i} x_{i}^{2}
\end{aligned}
$$

for $i=2, \ldots,(N-1)$. For the second derivative

$$
\begin{aligned}
s_{\left[x_{i-1}, x_{i}\right]}^{\prime \prime}\left(x_{i}\right) & =s_{\left[x_{i}, x_{i+1}\right]}^{\prime \prime}\left(x_{i}\right) \\
\Rightarrow 2 c_{i-1}+6 d_{i-1} x_{i} & =2 c_{i}+6 d_{i} x_{i}
\end{aligned}
$$

$$
\text { for } i=2, \ldots,(N-1)
$$

Cubic Splines

- Almost there. But we're still missing two equations.
- If we knew what the true function was - if we knew $f^{\prime}\left(x_{1}\right)$ and $f^{\prime}\left(x_{N}\right)$, then we could impose

$$
\begin{aligned}
s_{\left[x_{1}, x_{2}\right]}^{\prime}\left(x_{1}\right) & =f^{\prime}\left(x_{1}\right) \\
s_{\left[x_{N-1}, x_{N}\right]}^{\prime}\left(x_{N}\right) & =f^{\prime}\left(x_{N}\right)
\end{aligned}
$$

but why are we approximating this function if we knew that? We don't generally.

Cubic Splines

- You could assume that

$$
\begin{array}{r}
s_{\left[x_{1}, x_{2}\right]}^{\prime}\left(x_{1}\right)=0 \\
s_{\left[x_{N-1}, x_{N}\right]}^{\prime}\left(x_{N}\right)=0
\end{array}
$$

a bit arbitrary though, no?

Cubic Splines

- Could also use the first and final secants to approximate the first and final derivatives

$$
\begin{aligned}
s_{\left[x_{1}, x_{2}\right]}^{\prime}\left(x_{1}\right) & =\frac{s_{\left[x_{1}, x_{2}\right]}\left(x_{2}\right)-s_{\left[x_{1}, x_{2}\right]}\left(x_{1}\right)}{x_{2}-x_{1}} \\
s_{\left[x_{N-1}, x_{N}\right]}^{\prime}\left(x_{N}\right) & =\frac{s_{\left[x_{N-1}, x_{N}\right]}\left(x_{N}\right)-s_{\left[x_{N-1}, x_{N}\right]}\left(x_{N-1}\right)}{x_{N}-x_{N-1}}
\end{aligned}
$$

- Whatever you choose, the additional two points complete the system.
- It's a bunch of equations you can solve on the computer.

The Need for Orthogonality

- The space of continuous functions is spanned by monomials of the form x^{n} for $n=0,1,2, \ldots$.
- But these things all start to look alike after a while: collinear.
- Adding more an more of these things isn't going to help us achieve a better fit.
- Enter: orthogonal polynomials.

Orthogonal Polynomials

- Orthogonality generalises the idea of perpendicular objects.
- Two polynomials are orthogonal on some vector space if their inner product is zero.
- Inner products just generalise the idea of measuring angles between vectors.

Orthogonal Polynomials

- If two polynomials are orthogonal, it means that their shapes do not really resemble each other.
- Exactly what we're after with these approximation techniques: overcomes the collinearity issue with monomials.
- You can construct orthogonal polynomials using the Gram-Schmidt procedure.
- You can just Chebyschev polynomials: a special case.

Chebyschev Polynomials

- These are polynomials defined on the interval $T_{n}:[-1,+1] \rightarrow[-1,+1]$ that can be expressed recursively as

$$
T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \text { for } n \geqslant 2
$$

where

$$
\begin{aligned}
& T_{0}(x)=1 \\
& T_{1}(x)=x
\end{aligned}
$$

- See then that

$$
\begin{aligned}
& T_{2}(x)=2 x^{2}-1 \\
& T_{3}(x)=2 x\left(2 x^{2}-1\right)-x
\end{aligned}
$$

Chebyschev Polynomials: Implementation

- Judd's algorithm: choose m nodes and use them to construct a degree $n<m$ polynomial approximation of $f(x)$ on the interval $[a, b]$.
(1) Compute the $m \geqslant n+1$ nodes on $[-1,1]$.

$$
z_{k}=-\cos \left(\frac{2 k-1}{2 m} \pi\right) \text { for } k=1, \ldots, m
$$

(2) Adjust the nodes to your interval $[a, b]$

$$
x_{k}=\left(z_{k}+1\right)\left(\frac{b-a}{2}\right)+a \text { for } k=1, \ldots, m
$$

(3) Evaluate the function at the approximation nodes

$$
y_{k}=f\left(x_{k}\right) \text { for } k=1, \ldots, m
$$

Chebyschev Polynomials: Implementation

(4) Compute the Chebyschev coefficients c_{i} using

$$
c_{i}=\frac{\sum_{k=1}^{m} y_{k} T_{i}\left(z_{k}\right)}{\sum_{k=1}^{m} T_{i}\left(z_{k}\right)^{2}} \text { for } i=0,1, \ldots, n
$$

to get your approximation given as

$$
\hat{f}(x)=\sum_{i=0}^{n} c_{i} T_{i}\left(2 \frac{x-a}{b-a}-1\right)
$$

Interpolation v.s. Grid Search Example

- Consider a simple Bellman equation of the form

$$
v(x)=\max _{x^{\prime} \in X} u\left(x-x^{\prime}\right)+\beta v\left(x^{\prime}\right)
$$

where u is just some function.

- What does it look like to implement grid search here relative to interpolation methods?

Example: Grid Search

- Start by discretising the space X into $\left\{x_{i}\right\}_{i=1}^{N}$ where $x_{1}<x_{2}<\ldots<x_{N}$.
- We have some $N \times 1$ vector from the $j^{\text {th }}$ iteration.
- For each x_{i}, we aim to solve for v^{j+1} using

$$
v^{j+1}\left(x_{i}\right)=\max _{x^{\prime} \in X} u\left(x_{i}-x^{\prime}\right)+\beta v^{j}\left(x^{\prime}\right)
$$

Example: Grid Search

- The grid search algorithm is then of the form:
- While $\sup _{x}\left|v^{j}(x)-v^{j-1}(x)\right|>\epsilon$,
- Evaluate the vector of the form

$$
V_{i}^{j+1}=\left[\begin{array}{c}
u\left(x_{i}-x_{1}\right)+\beta v^{j}\left(x_{1}\right) \\
u\left(x_{i}-x_{2}\right)+\beta v^{j}\left(x_{2}\right) \\
\ldots \\
u\left(x_{i}-x_{N}\right)+\beta v^{j}\left(x_{N}\right)
\end{array}\right]
$$

for each $i=1, \ldots, N$.

- That is: for each gridpoint x_{i} in the state space, compute this column vector of numbers.
- The optimal choice of x^{\prime} for a given x_{i} is the one that gives you the largest number in vector V_{i}^{j+1}.

Example: Linear Interpolation

- Utilise the same gridpoint setup, but now we have intervals

Interval	Value $v^{j}(x)$
$x \in\left[x_{1}, x_{2}\right]$	$a_{1,2}^{j}+b_{1,2}^{j} x$
$x \in\left[x_{2}, x_{3}\right]$	$a_{2,3}^{j}+b_{2,3}^{j} x$
\ldots	\ldots
$x \in\left[x_{N-1}, x_{N}\right]$	$a_{N-1, N}^{j}+b_{N-1, N^{x}}^{j}$

- Then for each x_{i}, we aim to solve for v^{+1} using

$$
v^{j+1}(x)=\max _{x^{\prime} \in\left[x_{1}, x_{N}\right]} u\left(x_{i}-x^{\prime}\right)+\beta v^{j}\left(x^{\prime}\right)
$$

where see we are now looking at the entire interval $\left[x_{1}, x_{N}\right]$ rather than just in the set $\left\{x_{i}\right\}_{i=1}^{N}$.

Example: Linear Interpolation

- For the piecewise linear interpolation, the algorithm looks like the following
- While $\sup _{x}\left|v^{j}(x)-v^{j-1}(x)\right|>\epsilon$,
- Use a maximisation routine to maximise V_{i}^{j+1} where

$$
V_{i}^{j+1}=\left[\begin{array}{c}
u\left(x_{i}-x^{\prime}\right)+\beta\left[a_{1,2}^{j}+b_{1,2}^{j} x^{\prime}\right] \text { for } x^{\prime} \in\left[x_{1}, x_{2}\right] \\
u\left(x_{i}-x^{\prime}\right)+\beta\left[a_{2,3}^{j}+b_{2,3}^{j} x^{\prime}\right] \text { for } x^{\prime} \in\left[x_{2}, x_{3}\right] \\
\ldots \\
u\left(x_{i}-x^{\prime}\right)+\beta\left[a_{N-1, N}^{j}+b_{N-1, N}^{j} x^{\prime}\right] \text { for } x^{\prime} \in\left[x_{N-1}, x_{N}\right]
\end{array}\right]
$$

call the minimised value $v^{j+1}\left(x_{i}\right)$.

- With the new $v^{j+1}\left(x_{i}\right)$, recompute $\left\{a_{i, i+1}^{j+1}, b_{i, i+1}^{j+1}\right\}_{i=1}^{N-1}$.

Roadmap

(1) Adda \& Cooper (2003) Discretisation

(2) Interpolation

(3) Root-Finding Methods

Non-Linear Equations

- So many economic models look like the following

$$
f(x, y)=0
$$

where f is a function.

- That is: $\exists y=g(x)$ such that

$$
f(x, g(x))=0 \forall x \in X
$$

- E.g. an Euler equation.
- Searching for some policy function $g(x)$ of the current state x.

Bisection

- Remember the Intermediate Value Theorem?
- If we have a continuous function over some interval $[a, b]$ and takes the values $f(a)$ and $f(b)$ at these points, then $f(x)$ takes any value between $f(a)$ and $f(b)$ for $x \in[a, b]$.
- Bolzano's Theorem:
- If $f(a)$ and $f(b)$ have opposite signs with f continuous on $[a, b]$, then there must be a root such that $f(x)=0$ for some $x \in[a, b]$.

Bisection

- $f(a)$ and $f(b)$ with opposite signs... what does this mean in an economic context?
- Excess demand, anyone?
- If the price is too high, then excess demand is negative.
- If the price is too low, then excess demand is positive.

Bisection

- Say we think $f(x)$ is continuous on $x \in[a, b]$.
- Method of bisection follows the procedure
- Guess x^{\prime} such that $x^{\prime}=\frac{a+b}{2}$.
- If $f\left(x^{\prime}\right)$ and $f(b)$ have opposite signs, then replace a with x^{\prime}.
- If $f\left(x^{\prime}\right)$ and $f(a)$ have opposite sings, then set b as x^{\prime}.
- Repeat until $|a-b|<\epsilon$.

Bisection

- E.g. if $E D(p)$ is excess demand as a function of price $p \in[a, b]$.
- Set $x^{\prime}=\frac{a+b}{2}$ then
- Increase the price if $E D(p)>0$: i.e. set $a=x^{\prime}$.
- Decrease the price if $E D(p)<0$: i.e. set $b=x^{\prime}$.

Bisection

- Obviously many other procedures you can use.

