L2: Investment Decision Rules

Adam Hal Spencer

The University of Nottingham

Essentials of Financial Economics 2020 Financial Decision-Making (1^{st} Quarter)

What do we look for in a decision rule?

- Accounts for the time value of money.
- Accounts for risk.
- Does the rule tell us how much value the project creates?

Example project

- Throughout this lecture, we'll consider a project. Let's call it Project
 A.
- The cash flows generated by project A are as follows:
 - Invest \$100 at t = 0.
 - Receive \$30 each year after until t = 5 inclusive, (i.e. for t = 1, 2, 3, 4, 5).

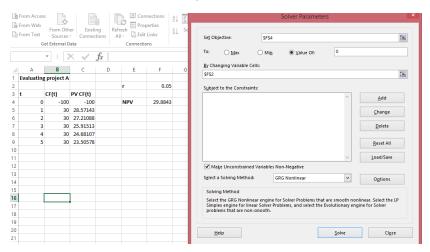
Method 1: NPV rule (1)

- The big daddy of decision rules.
- Weighs up the marginal cost and benefit associated with a particular project after discounting.
- Rule:
 - Accept the project if NPV ≥ 0
 - ullet Reject the project if NPV < 0
- $NPV = \sum_{t=0}^{T} \frac{CF_t}{(1+r_t)^t}$
- The NPV captures exactly the additional value created by the project for the firm
- The value of the firm is the sum of the NPVs of all of its projects.

Method 1: NPV rule (2)

4	Α	В	С	D	E	F
1	Evaluating project A					
2					r	0.05
3	t	CF(t)	PV CF(t)			
4	0	-100	=B4/(1+\$F\$2)^A4		NPV	=SUM(C4:C9)
5	1	30	=B5/(1+\$F\$2)^A5			
6	2	30	=B6/(1+\$F\$2)^A6			
7	3	30	=B7/(1+\$F\$2)^A7			
8	4	30	=B8/(1+\$F\$2)^A8			
9	5	30	=B9/(1+\$F\$2)^A9			

Method 2: IRR rule (1)

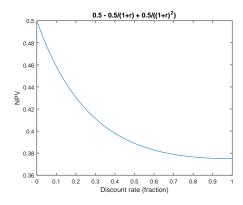

- A commonly used decision rule in the private sector.
- The internal rate of return (IRR) is the discount rate such that the NPV of the project is set to zero.

$$\bullet \sum_{t=0}^{T} \frac{CF_t}{(1+IRR)^t} = 0.$$

- Rule:
 - Accept project if IRR \geq required rate of return.
 - Reject project if IRR < required rate of return.
- Intuitively, if the IRR rule leads to acceptance, then the project is generating you a return higher than the next best use of your funds.

Method 2: IRR rule (2)

- Use Solver in excel.
 - Found under Data \Rightarrow Analysis \Rightarrow Solver.



Method 2: IRR rule (3)

- This decision rule is intuitive, but it has problems!
 - Can have multiple IRRs.
 - IRR may not exist!
- The warning sign is cash flows that alternate in sign many times between periods.
- Obviously also if the cash flows never change sign!

Method 2: IRR rule (4)

- Consider the following example:
 - Receive \$0.5 at t = 0.
 - Pay \$0.5 at t = 1.
 - Receive \$0.5 at t = 2.
 - NPV = $0.5 \frac{0.5}{1+r} + \frac{0.5}{(1+r)^2}$.
 - NPV function never crosses the r axis for any $r \in [0,1]$.

Method 3: payback rule (1)

- The amount of time required for an investment to generate after-tax cash flows that are sufficient to cover the initial cost.
- This method is evil. It doesn't take account of the time value of money or risk!
- Very intuitive though.
- Rule:
 - Accept if the payback period is less than some specified amount of time.
 - Reject if the payback period is greater than some specified amount of time.

Method 3: payback rule (2)

- Just look for the year such that the total positive cashflows exceed the initial investment.
- Payback period for project A is between four and five years.
- We'd accept the project if the cutoff was 5 years or above.

Evaluating project A				
t	CF(t)	Amount to be made	Cumulative CF(t)	
0	-100	100		
1	30	100	30	
2	30	100	60	
3	30	100	90	
4	30	100	120	
5	30	100	150	

Method 4: discounted payback rule (1)

- The length of time for the discounted cash flow receipts to offset the initial cost.
- Rule:
 - Accept if discounted payback year is less than specified cutoff year.
 - Reject if discounted payback year is above specified cutoff year.
- Again we require an arbitrary cutoff year.
- At least this method accounts for discounting though!

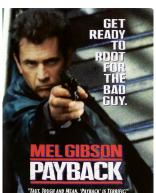
Method 4: discounted payback rule (2)

- Again the discounted payback period is between four and five years.
- Same conclusion as payback rule.

Evaluating	g project A					
					r	0.05
t	CF(t)	Amount to be made	PV CF(t)	Cumulative PV CF		
0	-100	100	-100		NPV	29.8843
1	30	100	28.57143	28.57142857		
2	30	100	27.21088	55.78231293		
3	30	100	25.91513	81.69744088		
4	30	100	24.68107	106.3785151		
5	30	100	23.50578	129.8843001		

Method 5: profitability index (1)

- Measures the benefit per unit of upfront cost.
- $PI = \frac{PV_1}{C_0}$ where PV_1 is the present value of positive cash flows starting next period onwards and C_0 is upfront cost.
- A PI value of 1.2 means that we create an additional \$0.2 of value per dollar of investment up front.
- Rule:
 - Accept if $PI \ge 1$ (creates value).
 - Reject if PI < 1 (destroys value).
- Not getting an idea of the absolute value created though.


Method 5: profitability index (2)

• Would accept project A under the PI rule.

Evaluatin	g project A			
			r	0.05
t	CF(t)	PV CF(t)		
0	-100	-100	PI	1.298843
1	. 30	28.57143		
2	30	27.21088		
3	30	25.91513		
4	30	24.68107		
5	30	23.50578		

Takeaways

- NPV rule is supreme!
- Other rules though can be inconclusive or lead to wrong investment decisions being made.
- Payback can be badass (see below), but not when it comes to decision-making!

