
Lecture II
Appendix

Adam Hal Spencer

The University of Nottingham

Applied Computational Economics 2020

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Roadmap

1 Computing RCE via Policy Function Iteration

2 Computing RCE via Projection Methods

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

Consider the following twist on the neoclassical growth model we’ve
been thinking about so far.

Households here earn a labour income, receive dividends and can save
through riskless bonds that are in zero net supply.

The firms own the capital stock and invest in it optimally each
period.

Let’s see what we can say about a competitive equilibrium in this
context...

1 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

Household’s problem looks like the following

max
tct ,bt�1,ntu8t�0

E0

8̧

t�0

βtupct , ntq

subject to

ct � bt�1 ¤ wtnt � btp1 � rq � dt

2 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

Firm’s problem looks like the following

max
tkt�1,nt ,dtu8t�0

E0

8̧

t�0

Mtdt

where

dt � atk
α
t n

γ
t � kt�1 � p1 � δqkt � wtnt

and at is some stochastic process.

What the hell is Mt?

3 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

Firm pays dividends to the households.

Firms’ investment decision-making should account for the preferences
of the households.

We should discount using the household’s preferences:

Mt � βtu1pctq

Relevant due to incomplete markets setup: households value
consumption differently in different states of the world.

4 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

We can write the Bellman equation for the firm as

V pa, k ,Mq � max
k 1,n,d

Mrakαnγ � k 1 � p1 � δqk � wtnts � ErM 1V pa1, k 1,M 1qs

5 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

What’s the complicating factor here?

The firm’s decisions must all be with the household’s SDF as given!

It (or consumption ct) becomes a state in the firm’s recursive
formulation.

This is not straightforward to solve using value function iteration.

Firm takes ct as given, (prehaps) with a law of motion similar to the
“big K-little k” setup, optimise, check consistency....it’s a mess.

6 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

Given that the household’s utility function is concave, the firm’s FOCs
are both necessary and sufficient for a solution to the problem.

We can work with this.

Leverage this to instead iterate on the policy function using the Euler
equation.

7 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

The firm’s Euler equation (in sequence form) is

Mt � Et

�
Mt�1pαat�1k

α�1
t�1 n

γ
t�1 � t1 � δuq

�

where there’s also an intra-temporal choice of labour input.

This Euler equation is then given by

u1pctq � βEt

�
u1pct�1qpαat�1k

α�1
t�1 n

γ
t�1 � t1 � δuq

�
.

8 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

This is the same Euler equation as if we solved the problem with the
households instead owning the capital stock.

So we could re-write the problem and solve it indirectly via value
function iteration on the household’s problem.

We’ll assume though that you want to solve the problem directly, (i.e.
as is: with the firm owning the capital stock).

For more complicated problems, you may have no choice but to solve
it directly.

9 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Functional Equations

We can usually re-write the optimality conditions in one of our
problems in the form

Ea1rf px , x
1, x2, a, a1qs � 0

and we’re usually looking for a policy function of the form
x 1 � gpx , aq such that

Ea1rf px , gpx , aq, gpgpx , aq, a
1q, a, a1qs � 0.

We seek an approximation to the policy function
x 1 � gpx , aq @x P X, a P A.

10 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (1): Time Iteration

Start with some guess: a candidate policy function gnpx , aq.

Plug it in to the functional equation and solve for x 1 such that the
equality holds

Ea1rf px , x
1, gnpx

1, a1q, a, a1qs � 0

where notice that here we’re plugging gnpx
1, a1q and solving for the

new policy function gn�1px , aq.

Can use a nonlinear equation solver.

Keep iterating until

||Ea1rf px , gnpx , aq, gnpgnpx , aq, a
1q, a, a1qs|| ε

11 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (1): Time Iteration

If the original problem was a contraction mapping, (e.g. Bellman
equation), then this procedure is the same as VFI.

Convergence properties the same.

12 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (2): Fixed Point Iteration

Sometimes it’s possible to re-write the functional equation in the form

Ea1rf px , x
1, x2, a, a1qs � x 1 � 0

for all x P X and a P A.

If we have a candidate gnpx , aq then we can update using

x 1 � Ea1rf px , gnpx , aq, gnpgnpx , aq, a
1q, a, a1qs

Continue iterating until

||x 1 � Ea1rf px , gnpx , aq, gnpgnpx , aq, a
1q, a, a1qs|| ε

13 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (2): Fixed Point Iteration

This algorithm can be fast, really fast.

Convergence might be problematic though.

Sometimes good to update the policy function “slowly”.

Meaning, set gn�1px , aq � ωgnpx , aq � p1 � ωqx 1 for some ω P r0, 1s.

14 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (3): Endogenous Grids

So far our approach has always started with discretising our state
space.

Then for each value in the resulting grid, we’d find a corresponding
value of the policy function.

E.g. recall the Euler equation and resource constraint for the
stochastic growth model

u1pcq � βEru1pc 1qr1 � δ � αpa1qpk 1qα�1ss

c � akα � k 1 � p1 � δqk

Then we’d discretise the set for k into tk1, k2, ..., kNu and a into
ta1, a2, ..., aNu in the stochastic growth model and then find k 1pk , aq
corresponding to each gridpoint pair.

15 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (3): Endogenous Grids

The method of endogenous gridpoints flips the problem around.

Create a grid for x 1 instead of x .

Solve for x from

Ea1rf px , x
1, gnpx

1, a1q, a, a1qs � 0.

then use the discretised vector for x 1 with the solution for x to update
the policy function gn�1px , aq.

16 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (3): Endogenous Grids

E.g. back to the stochastic growth model.

Create a grid for k 1 as tk 11, k
1
2, ..., k

1
Nu, (still do the same for a).

Define new state variable y as

y � akα � p1 � δqk

where

u1py � k 1q � βEru1py 1 � gnpy
1, a1qqt1 � δ � αpa1qpk 1qα�1us

17 / 24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (3): Endogenous Grids

Then assuming invertability of the utility function, we can say

y � u1�1
�
βEru1py 1 � gnpy

1, a1qqt1 � δ � αpa1qpk 1qα�1us
�
� k 1

gives us the k such that the choice of k 1 is optimal for that pair
pk, aq.

Rather than finding the k 1 that corresponds with the k grid, the
procedure is telling us the k that corresponds with the choice of k 1.

Update gn�1py , aq accordingly.

18 / 24

Computing RCE via Projection Methods Spencer (Nottingham)

Roadmap

1 Computing RCE via Policy Function Iteration

2 Computing RCE via Projection Methods

Computing RCE via Projection Methods Spencer (Nottingham)

Motivation

We’ve already touched on this a bit in the last lecture.

We can use interpolation methods to approximate a continuous value
function using monomials or, better yet, orthogonal polynomials.

Another alternative is to approximate policy functions in this way.

I won’t spend much time on it, but I’ll give a quick example to make
it clear.

Let’s just keep it simple: we’ll use monomials.

19 / 24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

Let’s think about the deterministic neoclassical growth model.

Say there’s inelastic labour supply and CRRA preferences.

The solution is given by the Euler equation and resource constraint
respectively:

c�σ � βpc 1q�σtαpk 1qα�1 � p1 � δqu

k 1 � kα � c � p1 � δqk

Since this is deterministic, our only state variable is k.

20 / 24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

Let’s consider approximation with a second order polynomial.

Denote the vector of coefficients as ~b � pb0, b1, b2q.

Let our policy function take the form of

c � cpk , ~bq � exppb0 � b1 logpkq � b2 logpk2qq

why the exponential-log trickery?

21 / 24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

We’ll take as our criterion function to be the sum of squared residuals

min
t~bu

ņ

i�1

R2
i

where i denotes an index over a grid of states, (to be defined shortly).

We can use many other criteria instead: this feels natural; like an
OLS analogue.

22 / 24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

Procedure is then

(1) Choose a grid of the state tk1, k2, ..., knu and an initial guess for the
coefficient vector.

(2) For each gridpoint, compute the following objects

k 1i � kα
i � cpki , ~bq � p1 � δqki

cpki , ~bq � exp
�
b0 � b1 logpki q � b2 logpk2

i q
�

Ri � cpki , ~bq
�σ � βcpk 1i ,

~bqrαpk 1i q
α�1 � 1 � δs

(3) Choose the new coefficients to mimimise

ņ

i�1

R2
i

23 / 24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

Where is this form of the residual function coming from?

Non-linear least squares!

I often have trouble getting these projection approaches to policy
function approximation to converge.

24 / 24

