Lecture Il
Appendix

Adam Hal Spencer

The University of Nottingham

Applied Computational Economics 2020

Computing RCE via Policy Function Iteration Spencer (Nottingham)
Roadmap

@ Computing RCE via Policy Function Iteration

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

@ Consider the following twist on the neoclassical growth model we've
been thinking about so far.

@ Households here earn a labour income, receive dividends and can save
through riskless bonds that are in zero net supply.

@ The firms own the capital stock and invest in it optimally each
period.

o Let’s see what we can say about a competitive equilibrium in this
context...

1/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

@ Household's problem looks like the following

max EOZB u(ce, nt)

{Ct7bt+17”t}tf;0
subject to

Ct + bt+1 < weng 4+ bt(]. + r) + dt

2/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

@ Firm's problem looks like the following

0
maXx]EO 2 Mtdt

{kes1,nt,de} 7 t=0
where
dt = atk?nz - kt+1 + (1 B 5)kt L

and a; is some stochastic process.

@ What the hell is M;?

3/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

@ Firm pays dividends to the households.

@ Firms' investment decision-making should account for the preferences
of the households.

@ We should discount using the household’s preferences:
Mt = 5tUI(Ct)

@ Relevant due to incomplete markets setup: households value
consumption differently in different states of the world.

4/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

@ We can write the Bellman equation for the firm as

V(a, k, M) = max M[ak®n" — k' + (1 — §)k — wene| + E[M'V(d', k', M")]

5/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

What's the complicating factor here?

The firm's decisions must all be with the household’s SDF as given!

It (or consumption ¢;) becomes a state in the firm’s recursive
formulation.

This is not straightforward to solve using value function iteration.

Firm takes c; as given, (prehaps) with a law of motion similar to the
“big K-little k" setup, optimise, check consistency....it's a mess.

6/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

@ Given that the household’s utility function is concave, the firm's FOCs
are both necessary and sufficient for a solution to the problem.

@ We can work with this.

@ Leverage this to instead iterate on the policy function using the Euler
equation.

7/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

@ The firm's Euler equation (in sequence form) is
Mt =]Et [Mt+]_(0[3t+1k?_~:llnz+1 + {1 - (5})]

where there's also an intra-temporal choice of labour input.

@ This Euler equation is then given by

d(ct) = BE: [t (cesn)(@ara kg, + {1 - 3))].

8/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Motivation

@ This is the same Euler equation as if we solved the problem with the
households instead owning the capital stock.

@ So we could re-write the problem and solve it indirectly via value
function iteration on the household's problem.

e We'll assume though that you want to solve the problem directly, (i.e.
as is: with the firm owning the capital stock).

@ For more complicated problems, you may have no choice but to solve
it directly.

9/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Functional Equations

@ We can usually re-write the optimality conditions in one of our
problems in the form

E,[f(x,x,x",a,a)] =0

and we're usually looking for a policy function of the form
x" = g(x, a) such that

Ea’[f(xag(xa a),g(g(x, a)aa,)737 al)] =0.

@ We seek an approximation to the policy function
x'=g(x,a) Vxe XL, ,ae d.

10/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (1): Time Iteration
@ Start with some guess: a candidate policy function g,(x, a).

@ Plug it in to the functional equation and solve for x’ such that the
equality holds

Eu[f(x,x', gn(x',d),a,a)] =0

where notice that here we're plugging g,(x’, a’) and solving for the
new policy function g,1+1(x, a).

@ Can use a nonlinear equation solver.

o Keep iterating until

IEa [£(x, gn(x, a), 8n(gn(x, a),2), 2,)] < €

11/24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (1): Time Iteration

o If the original problem was a contraction mapping, (e.g. Bellman
equation), then this procedure is the same as VFI.

@ Convergence properties the same.

12/24

Solving Functional Equations (2): Fixed Point Iteration

@ Sometimes it's possible to re-write the functional equation in the form
Ex[f(x,x,x",a,a)]—x' =0
forall xe X and ae o.
e If we have a candidate g,(x, a) then we can update using
X' =Ky [f(x, gn(x, a), gn(gn(x; a),), 2,)]
o Continue iterating until

||X/ - Ea'[f(X7 gn(X’ 3),gn(gn(X, 3)7 3/), 37 al)]H <€

13/24

Solving Functional Equations (2): Fixed Point Iteration

This algorithm can be fast, really fast.

Convergence might be problematic though.

@ Sometimes good to update the policy function “slowly”.

Meaning, set g,11(x,a) = wgn(x,a) + (1 —w)x’ for some w € [0, 1].

14/24

Solving Functional Equations (3): Endogenous Grids

@ So far our approach has always started with discretising our state
space.

@ Then for each value in the resulting grid, we'd find a corresponding
value of the policy function.

o E.g. recall the Euler equation and resource constraint for the
stochastic growth model

u'(c) = BE[U'(c)[1 =8 + a(a) (k)]
c=ak®—k +(1-9)k

@ Then we'd discretise the set for k into {ki, ko, ..., ky} and a into
{a1, a2, ..., an} in the stochastic growth model and then find k’(k, a)
corresponding to each gridpoint pair.

15/24

Solving Functional Equations (3): Endogenous Grids

@ The method of endogenous gridpoints flips the problem around.
@ Create a grid for x’ instead of x.

@ Solve for x from
Ex[f(x,x', gn(x,a"),a,d")] = 0.

then use the discretised vector for x’ with the solution for x to update
the policy function gp11(x, a).

16 /24

Computing RCE via Policy Function Iteration Spencer (Nottingham)

Solving Functional Equations (3): Endogenous Grids

o E.g. back to the stochastic growth model.
o Create a grid for k" as {ki{, k5, ..., kp}, (still do the same for a).

@ Define new state variable y as
y =ak“+(1—-0)k
where

u'(y — k') = BE[U'(Y' — gn(y', @) {1 — 6 + a(a) (K)*7H}]

17/24

Solving Functional Equations (3): Endogenous Grids

@ Then assuming invertability of the utility function, we can say
y=u"(BE[Y(Y — gn(y',)1 =8 + a(d)(K)*H]) + K

gives us the k such that the choice of k' is optimal for that pair
(k,a).

@ Rather than finding the k' that corresponds with the k grid, the
procedure is telling us the k that corresponds with the choice of k’.

e Update g,+1(y, a) accordingly.

18/24

Computing RCE via Projection Methods Spencer (Nottingham)
Roadmap

© Computing RCE via Projection Methods

Computing RCE via Projection Methods Spencer (Nottingham)

Motivation

We've already touched on this a bit in the last lecture.

We can use interpolation methods to approximate a continuous value
function using monomials or, better yet, orthogonal polynomials.

@ Another alternative is to approximate policy functions in this way.

@ | won't spend much time on it, but I'll give a quick example to make
it clear.
@ Let’s just keep it simple: we'll use monomials.

19/24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

o Let's think about the deterministic neoclassical growth model.

Say there's inelastic labour supply and CRRA preferences.

@ The solution is given by the Euler equation and resource constraint
respectively:

¢ = B()y (k)L + (1-0))
K=k —c+(1-0)k

@ Since this is deterministic, our only state variable is k.

20/24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

o Let’s consider approximation with a second order polynomial.
o Denote the vector of coefficients as b = (bg, by, by).

@ Let our policy function take the form of
c = ¢(k, b) = exp(by + by log(k) + by log(k?))

why the exponential-log trickery?

21/24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

@ We'll take as our criterion function to be the sum of squared residuals

min Zn: R?

{6} &

where i denotes an index over a grid of states, (to be defined shortly).

@ We can use many other criteria instead: this feels natural; like an
OLS analogue.

22/24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

@ Procedure is then

(1) Choose a grid of the state {ki, ko, ..., k,} and an initial guess for the
coefficient vector.

(2) For each gridpoint, compute the following objects

Kl = ki — ¢(ki, b) + (1 — 0)ki
<(ki, b) = exp (bo + by log(k;) + by log(k?))
R; = ¢(ki,b)~7 — Be(kl, b)[a(k)* ! +1 - 4]

(3) Choose the new coefficients to mimimise
>
i=1

23/24

Computing RCE via Projection Methods Spencer (Nottingham)

Projections of Policy Functions

@ Where is this form of the residual function coming from?
@ Non-linear least squares!

@ | often have trouble getting these projection approaches to policy
function approximation to converge.

24/24

