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Introduction Spencer (Nottingham)

Outline

We’ve gotten the basic stuff out of the way.

From here we go:

Representative agents in general equilibrium,

Heterogeneous agents, (idiosyncratic uncertainty),

Heterogeneous agents, (aggregate uncertainty).
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Introduction Spencer (Nottingham)

Equilibrium Concepts

How do we define a dynamic general equilibrium?

In a static context, we study general equilibrium with a finite number
of goods.

When we start talking about dynamics, we get into the realm of
infinite-dimensional spaces...
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Equilibrium Concepts

Three predominant approaches we can take when dealing with market
economies, (i.e. not social planner’s problem)

Arrow-Debreu (valuation) equilibrium,

Sequential markets equilibrium,

Recursive competitive equilibrium.

The third is the most useful from a computational perspective.

These types of decentralised equilibria are interesting when we start
introducing distortions, (e.g. taxes).

Can no longer just use the social planner’s problem.

Let’s briefly contrast these three equilibrium concepts.
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Neoclassical General Equilibrium Model

Consider the deterministic market version of our favourite problem
(where the household owns the capital stock)

Household’s problem is

max
tct ,kt�1u8t�0

8̧

t�0

βtupctq

subject to

kt�1 � ct � rtkt � p1 � δqkt � πt

ct , kt�1 ¥ 0

with k0.

Firm’s problem:

max
tktu

πt � kαt � rtkt

In this setup, consumption at time t is the numerairé.
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (1): Arrow-Debreu Equilibrium

An A-D equilibrium treats this as a static GE problem with an infinite
number of goods to allocate across (given that we have infinite time
periods).

The households all trade only at t � 0 and deal in irrevocable claims
to commodities indexed by time.

They buy claims to consumption at any arbitrary time t ¥ 0.

Claim trading closes at the end of t � 0. These markets then close
forever and then the “world plays-out” until the end of time.

Firms produce and hand-over their goods, but only in accordance
with what was agreed at t � 0, (no more negotiations).

All agents bound to follow contracts set-out at t � 0.
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (1): Arrow-Debreu Equilibrium

We take consumption at time t � 0 as the numerairé here.

Price of consumption at time t relative to time t � 0 is denoted pt ,
(where p0 � 1).
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (1): Arrow-Debreu (A-D) Equilibrium

An A-D equilibrium is a set of

Prices tp�t u
8

t�0 (consumption goods), tr�t u
8

t�0 (rental rate on capital),

Quantities tc�t , k
�

t�1u
8

t�0, such that

(1) Sequence tc�t , k
�
t�1u

8
t�0 solve the consumer’s problem

max
tct ,kt�1u8t�0

8̧

t�0

βtupctq

subject to their time t � 0 budget constraint

8̧

t�0

p�t rct � kt�1s ¤
8̧

t�0

p�t rr
�
t kt � p1 � δqkts

with k0 taken as given.

Notice that the price r�t is relative to time t consumption goods.
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (1): Arrow-Debreu (A-D) Equilibrium

(2) Sequence tk�t u
8
t�0 solves the firm problem

max
tktu

p�t k
α
t � p�t r

�
t kt

(3) Markets clear

c�t � k�t�1 � pk�t q
α � p1 � δqk�t
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (2): Sequential Markets Equilibrium

How about we have trading in assets taking place at every t ¥ 0.

Each period, markets open all the trading takes place, they close and
then open again next period.

Seems a bit more natural...

9 / 62



Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (2): Sequence Markets Equilibrium

A sequential markets equilibrium is a set of

Prices tr�t u
8

t�0 (rental rate on capital),

Quantities tc�t , k
�

t�1u
8

t�0, such that

(1’) Sequence tc�t , k
�
t�1u

8
t�0 solve the consumer’s problem

max
tct ,kt�1u8t�0

8̧

t�0

βtupctq

subject to their time t budget constraint

ct � kt�1 � r�t kt � p1 � δqkt

with k0 taken as given.

Notice that the price r�t is relative to time t consumption goods.
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (2): Sequence Markets Equilibrium

(2’) Sequence tk�t u
8
t�0 solves the firm problem

max
tktu

kαt � r�t kt

@t.

(3’) Markets clear

c�t � k�t�1 � pk�t q
α � p1 � δqk�t

@t.

11 / 62



Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

A-D and Sequential Markets Equilibria

Notice again that these two methods involve computing infinite
sequences.

Again, computers don’t like that.

Remember we had this same problem with the household’s sequence
problem?

Our solution there was the recursive formulation.

Can something similar save us here?
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (3) Recursive Competitive Equilibrium

We can start by again thinking about the household’s recursive
formulation.

There’s a slight twist on what we looked at in the partial equilibrium
setup last time.

Factor prices in this market economy are functions of the
representative agents’ choices, but they’re meant to be taking these
things as given.

Trick: “big-K, little-k”.
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (3) Recursive Competitive Equilibrium

The household’s recursive formulation is given by

vpk ,K q � max
tc,k 1u

upcq � βvpk 1,K 1q

subject to

c � k 1 � RpK qk � p1 � δqk

K 1 � G pK q

where notice that the household now has two states — k and K .

RpK q is the rental rate on capital: determined at the aggregate level
from production function Kα.

The second constraint is the law of motion of aggregate capital,
which the household takes as given.
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (3) Recursive Competitive Equilibrium

k denotes the household’s current capital stock.

K denotes the aggregate capital stock.

In equilibrium, they will be the same.

But the household takes K as given when they make their decisions!

So we can’t allow them to internalise their choices’ effect on K .
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (3) Recursive Competitive Equilibrium

A recursive competitive equilibrium is a set of functions

Quantities G pK q, gpk ,K q: the law of motion for aggregate capital and
the household’s policy function respectively.

Lifetime utility level vpk ,K q.

Price RpK q, all such that

(1”) Value function vpk ,K q solves the household’s recursive formulation
and gpk ,K q is the associated policy function.

(2”) Prices are determined competitively

RpK q � αKα�1
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (3) Recursive Competitive Equilibrium

(3”) Consistency is satisfied

G pK q � gpK ,K q @K

where notice that the requirement that the capital law of motion
equal the household’s policy function is an equilibrium condition.

It’s not something that we impose until after solving the household’s
problem with K given.

This condition says that when the household is endowed with a level
of capital equal to that of the aggregate, their behaviour is consistent
with the aggregate law of motion.
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Equilibrium Concepts in Dynamic Models Spencer (Nottingham)

Concept (3) Recursive Competitive Equilibrium

Notice that the price RpK q is a function as opposed to a price
sequence like it was before.

The same goes for the control variables: cpk,K q and k 1pk,K q.

This is nice: we simplified the infinite-dimensional problem into
something recursive and time-invariant that we can solve on a
computer!
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Extending to Stochastic Models Spencer (Nottingham)

Randomness

With randomness, we need to think about states of the world in each
period.

Say we think now about a production function of the form AtK
α
t .

Where At follows a Markov process.

Means that current probabilities are determined by most recent
realisations, (At�1 is the state for the stochastic process).

At � QpAt |At�1q.

Say that the process for At is discretised into |Ω| elements (countably
finite), which are invariant across time.

I.e. Atpωq where ω P tω1, ω2, ..., ω|Ω|u.
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Extending to Stochastic Models Spencer (Nottingham)

Stochastic Recursive Competitive Equilibrium

The notion of a recursive competitive equilibrium is extendible to a
stochastic world, (assuming a Markov technology process).

Again, just build-off the ideas of recursive household representations
and consistency.

Let’s assume for now that the household can only save through
capital, meaning that markets are incomplete.

Everything is the same as before except output comes through AtK
α
t

where At follows a Markov process.
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Extending to Stochastic Models Spencer (Nottingham)

Stochastic Recursive Competitive Equilibrium

Household’s problem will now be given by

vpk ,K ,Aq � max
tc,k 1u

upcq � βEA1|ArV pk
1,K 1,A1qs

subject to

c � k 1 � RpK ,Aqk � p1 � δqk

K 1 � G pK ,Aq
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Extending to Stochastic Models Spencer (Nottingham)

Stochastic Recursive Competitive Equilibrium

A stochastic recursive competitive equilibrium is a set of functions

Quantities G pK ,Aq, gpk ,K ,Aq: the law of motion for aggregate
capital and the household’s policy function respectively.

Lifetime utility level vpk ,K ,Aq.

Price RpK ,Aq, all such that

(1”) Value function vpk ,K ,Aq solves the household’s recursive formulation
and gpk ,K ,Aq is the associated policy function.

(2”) Prices are determined competitively

RpK ,Aq � αAKα�1
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Extending to Stochastic Models Spencer (Nottingham)

Stochastic Recursive Competitive Equilibrium

(3”) Consistency is satisfied

G pK ,Aq � gpK ,K ,Aq @K

The state can indeed be changing between periods, (through
fluctuating A).

But again, the problem always looks the same in this recursive setup.
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Computing RCE via Value Function Iteration Spencer (Nottingham)

Algorithm

Hopefully you have a decent intuition for the procedure by now.

Say we are solving the deterministic model from the second section of
these slides.

(1) Guess the law of motion for aggregate capital G pK q.

(2) Find the return RpK q.

(3) Solve the household’s problem in the standard way with VFI to get
gpk ,K q.

(4) Update your guess of G pK q, (given that the individual and aggregate
functions are meant to be “close”).
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Computing RCE via Value Function Iteration Spencer (Nottingham)

Algorithm

This process is effectively mapping from a guess of G pK q to an
update of it.

This functional is not necessarily a contraction.

Iterations on the computer might not converge, if it does, the
differences may be highly non-monotonic.

Update policy functions slowly!
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Computing RCE via Value Function Iteration Spencer (Nottingham)

Algorithm

You can use other methods rather than VFI here, (which can be
faster).

See the appendix for more details.
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Transition Dynamics Between RCE: Shooting Algorithm Spencer (Nottingham)

Transition Dynamics

I’ve been pushing recursive competitive equilibria on you all day.

We were looking for functions of the state space that were invariant
over time.

What happens in the face of a government policy change though?

Thing must be changing in the short-run as we transition to a new
RCE.

27 / 62



Transition Dynamics Between RCE: Shooting Algorithm Spencer (Nottingham)

Transition Dynamics

Consider the social planner’s formulation for the neoclassical growth
model.

I.e. let’s step away from markets for a second just to keep things
simple.

The concepts are the same when you have a decentralised economy.

max
tct ,kt�1u8t�0

8̧

t�0

βtupctq

subject to

ct � kt�1 � kαt � p1 � δqkt

for some initial k0.
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Transition Dynamics Between RCE: Shooting Algorithm Spencer (Nottingham)

Transition Dynamics

Optimality condition for capital investment is

u1pctq � βu1pct�1qr1 � δ � αkα�1
t�1 s

Start at point k0 and the model will eventually converge to a steady
state given by

kss �

"�
1

β
� p1 � δq



1

α

* 1
α�1
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Transition Dynamics Between RCE: Shooting Algorithm Spencer (Nottingham)

Transition Dynamics

Say that the economy was in this steady state until time t � 0, (i.e.
k0 is equal to the initial steady state).

Then the depreciation rate magically (unanticipated) increases to
δ1 ¡ δ. Will stay with this depreciation rate forever more.

The new steady state is given by

kss
1

�

"�
1

β
� p1 � δ1q



1

α

* 1
α�1

  kss
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Transition Dynamics Between RCE: Shooting Algorithm Spencer (Nottingham)

Transition Dynamics

Ok...fine. How do we reach this new steady state though?

We have initial and endpoint conditions.

Also know the sufficient conditions for the optimum (Euler equation
and resource constraint).

Just need to map journey between the two steady states.

31 / 62



Transition Dynamics Between RCE: Shooting Algorithm Spencer (Nottingham)

Shooting Algorithm

(1) Guess the number of time periods it takes to transition to the new
steady state. Call this number S P N.

(2) Guess your initial value for consumption, c0.

(3) This then implies your initial investment

ñ k1 � pkssqα � p1 � δqkss � c0

(4) Iterate on your Euler equation to get c1

c1 � u
1�1

 
u1pc0qβ

�1r1 � δ � αkα1 s
�1
(

which is just c1 � βc0r1 � δ � αkα�1
1 s if log utility.
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Transition Dynamics Between RCE: Shooting Algorithm Spencer (Nottingham)

Shooting Algorithm

(5) Repeat this procedure until time S .

(6) Will give you a candidate transition path

tc0, c1, ..., cSu and tkss , k1, k2, ..., kSu

check if kS � kSS
1

. Stop if sufficiently close.

(7) If not sufficiently close, update your guess of c0

If kS   kSS 1

then lower c0.

If kS ¡ kSS 1

then increase c0. Return to step (3).
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Transition Dynamics Between RCE: Shooting Algorithm Spencer (Nottingham)

Shooting Algorithm

Pretty straightforward right?

Things get more complicated if we don’t have closed-form optimality
conditions, (e.g. heterogeneous agents, discrete choices, more control
variables).

So we’ll revisit this notion of transition dynamics when we get to
heterogeneous agents models.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Global v.s. Local Solutions

The methods we’ve covered so far yield global solutions to problems.

Gives you the solution to the problem over the entire domain, (or an
approximation to it).

Local solutions, in contrast, give you solutions in a small
neighbourhood of some point.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Global v.s. Local Solutions

When would we want to use a local solution?

If we’re thinking about small (temporary) deviations from a steady
state.

Again, emphasis on small.

The approach is inaccurate for large deviations.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Dynare

The good thing about local solutions is that the barrier to
implementation is incredibly low.

Some good citizens (predominantly based in France), developed a
software called Dynare.

Their current slogan says it all...
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Dynare
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Dynare

This software is a toolbox for Matlab.

Easy to install, easy to use.

Solves and estimates dynamic rational expectations models with
little-no programming experience.

Can use maximum likelihood or Bayesian estimation.

Very popular with people at central banks.

Used a lot by researchers of the new Keynesian DSGE paradigm.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Dynare

All you have to do is find the optimality conditions for your problem
and type them into a simple script.

Dynare uses local approximations to these optimality conditions to
find your solution.

You can either find the local approximation yourself, (I’ll talk about
this in a moment), or even get the software to do it for you.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Dynare

The software’s output depends on whether you’re just solving or also
estimating a model.

Solving a model gives output of locally-approximated policy functions.

Estimation also tells you the parameter values of the model that are
internally consistent with the data you provide it with.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Dynare

I’m all in favour of this software as it does make structural modelling
super-accessible.

To give you an idea: I had three undergraduates last year who studied
new Keynesian models with Dynare.

Really great stuff and a true service to the profession that these
developers are contributing.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Controversial Statements

There’s always a but with these things though.

I’m not going to teach you how to use it.

I’ve made you aware of it and I’ll explain the general idea behind
perturbation methods in the slides to come.

Coming from graduate school at Wisconsin, I can’t in all good
conscience teach you how to use Dynare here...
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Controversial Statements

My advisor once said:

These heavy computational guys like Victor Rios-Rull would never
speak to you again if they found out that you used Dynare (Corbae,
2014).

I think he might have also used the words “non-macho”,
“non-kosher” and Dynare in the same sentence.

If you want to be a serious quantitative economist, you need to code
things up for yourself.

Dynare’s like a black box. Fine for policymakers who want a quick
quantitative estimate. Won’t get you very far (in terms of journal
ranking) if you’re writing a paper you want to publish though.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Perturbation Methods

Say that we’re trying to solve a functional equation of the form

Fpx , x 1q � 0
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Perturbation Methods

The perturbation approach approximates using

x 1px , b̃q �
ņ

i�0

b̃i px � x0q
i

where x0 is a particular point and b̃ is a vector of coefficients.

The solution is analytic for a neighbourhood around x0.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Perturbations about Steady State

The typical thing to do in economics is perturb the model about its
non-stochastic steady state.

Shut-down the shocks and find the point where all the variables are
constant.

Then look for a locally analytic solution.

Although, in principle, you can approximate about any point.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Perturbations about Steady State

Consider the stochastic growth model

max
tct ,kt�1u8t�0

E0

8̧

t�0

βtc1�σ
t

subject to

ct � kt�1 � atk
α
t � p1 � δqkt

logpatq � ρ logpat�1q � σεt , εt � Np0, 1q
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Perturbations about Steady State

Euler equation for an arbitrary time preiod

c�σt � βEt

 
c�σt�1rαat�1k

α�1
t�1 � p1 � δqs

(
In the non-stochastic steady state, εt � 0 @t. Gives

logpatq � ρ logpat�1q

ñ at � ass

� 1

meaning that

1 � β
!
αpkssqα�1 � p1 � δq

)

ñ kss �

"�
1

β
� p1 � δq



1

α

* 1
α�1

just as before.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Perturbations about Steady State

Also have the steady state resource constraint

css � pkssqα � δkss
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Perturbations about Steady State

Let’s pick a perturbation parameter λ.

In this example, λ is such that

logpatq � ρ logpat�1q � λσεt

where λ � 1 is the stochastic case and λ � 0 is the deterministic
steady state.

We now search for decision rules of the form

ct � cpkt , at , λq

kt�1 � kpkt , at , λq
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Perturbations about Steady State

We now seek a local approximation about the point pkss , 1, 0q for
pkt , at , λq.

We want to approximate the policy functions c � cpk, aq and
k 1 � kpk, aq locally.

How? Taylor’s theorem.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Taylor’s Theorem

The policy function expansions are of the form

ct � cpkss , at , 1q

� cpkss , 1, 0q

� ckpk
ss , 1, 0qpkt � kssq � capk

ss , 1, 0qpat � 1q � cλpk
ss , 1, 0qλ

�
1

2
ckkpk

ss , 1, 0qpkt � kssq2 �
1

2
ckapk

ss , 1, 0qpat � 1qpkt � kssq � ...

look familiar?

Same idea for the k policy function.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Taylor’s Theorem

Recall we had two equilibrium conditions, which we’ll now denote by

~F pkt , at , λq �

Et

�
cpkt , at , λq

�σ � β
!
pcpkpkt , at , λq, at�1, λqq

�σrαat�1kpkt , at , λq
α�1 � p1� δqs

)
cpkt , at , λq � kpkt , at , λq � p1� δqkt � atk

α
t

�

where ~F pkt , at , λq � ~0 from our FOCs.

We can also denote this as

~F pkt , at , λq � ~Fpct , ct�1, kt , kt�1, at , λq

where I write it in this way to make explicit that the dependence
through the states come through policy functions for ct , ct�1 and
kt�1.

Denote the derivative of the j th entry of ~F by ~Fj
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Zeroth-Order Expansion

See that

~F pkss , 1, 0q � ~0

ñ kss �

"�
1

β
� p1 � δq



1

α

* 1
α�1

ñ css � pkssqα � δkss

i.e. just our steady state conditions.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

First-Order Expansion

Take first order derivatives and see that

~Fkpk
ss , 1, 0q � 0

~Fapk
ss , 1, 0q � 0

~Fλpk
ss , 1, 0q � 0

why the zeros?
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Local Solutions: Perturbation Methods Spencer (Nottingham)

First-Order Expansion

Zeros follow from the fact that ~F pkt , at , λq � ~0 always.

See then that

~Fkpk , 1, 0q � ~F1ck � ~F2ckkk � ~F3 � ~F4kk � 0

~Fapk , 1, 0q � ~F1ca � ~F2

�
ckka � ca

Bat�1

Bat

�
� ~F4ka � ~F5 � 0

where c and k denote the policy functions for the controls.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

First-Order Expansion

Where

~Fkpk , 1, 0q � ~F1ck � ~F2ckkk � ~F3 � ~F4kk � 0

~Fapk , 1, 0q � ~F1ca � ~F2

�
ckka � ca

Bat�1

Bat

�
� ~F4ka � ~F5 � 0

is a quadratic system of 4 unknowns (ck , ca, kk , ka) with 4 equations
(given that we have both the Euler equation and resource constraint).

Quadratic since we have these coefficients in cross products and the
like.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

Second-Order Expansion

For this we then take the second derivatives around pk, 1, 0q.

Fkkpk , 1, 0q � 0

Fkapk , 1, 0q � 0

Fkλpk , 1, 0q � 0

Faapk , 1, 0q � 0

Faλpk , 1, 0q � 0

Fλλpk , 1, 0q � 0
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Local Solutions: Perturbation Methods Spencer (Nottingham)

How Many Orders?

There are some things to note.

First order approximations miss some things in relation to uncertainty.
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Local Solutions: Perturbation Methods Spencer (Nottingham)

How Many Orders?

Fernandez-Villaverde et al. (2016) point out the following drawbacks
of first order approximations

Hard to infer the welfare effects of uncertainty,

Solution can’t generate risk premia for assets,

Can’t study the consequences of a change in volatility.

Ok...so go higher...more burdensome computationally though.

Solving for more and more unknowns.
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Roadmap

1 Introduction

2 Equilibrium Concepts in Dynamic Models

3 Extending to Stochastic Models

4 Computing RCE via Value Function Iteration

5 Transition Dynamics Between RCE: Shooting Algorithm

6 Local Solutions: Perturbation Methods

7 Conclusion
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Summary

Basically covered two solution techniques.

Recursive competitive equilibrium.

Local approximations.

Both have advantages and drawbacks....the appropriate method really
depends on the application you have in mind.
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