FIN 325 Corporate Finance
 L2 (Techniques): Investment Decision Rules

Instructor: Adam Hal Spencer ${ }^{1}$

Summer 2016

[^0]
What do we look for in a decision rule?

- Accounts for the time value of money.
- Accounts for risk.
- Does the rule tell us how much value the project creates?

Example project

- Throughout this lecture, we'll consider a project. Let's call it Project A.
- The cash flows generated by project A are as follows:
- Invest $\$ 100$ at $t=0$.
- Receive $\$ 30$ each year after until $t=5$ inclusive, (i.e. for $t=1,2,3,4,5)$.

Method 1: NPV rule (1)

- The big daddy of decision rules.
- Weighs up the marginal cost and benefit associated with a particular project after discounting.
- Rule:
- Accept the project if NPV ≥ 0
- Reject the project if NPV <0
- $N P V=\sum_{t=0}^{T} \frac{C F_{t}}{\left(1+r_{t}\right)^{t}}$
- The NPV captures exactly the additional value created by the project for the firm.
- The value of the firm is the sum of the NPVs of all of its projects.

Method 1: NPV rule (2)

1	A	B	C	D	E	F
1	Evaluating p					
2					r	0.05
3	t	CF(t)	PV CF(t)			
4	0	-100	=B4/(1+\$F\$2 $)^{\wedge}$ A 4		NPV	=SUM (C4:C9)
5	1	30	=B5/(1+\$F\$2 $)^{\wedge}$ A5			
6	2	30	=B6/(1+\$F\$2 $)^{\wedge}$ A6			
7	3	30	$=B 7 /(1+\$ F \$ 2)^{\wedge} A 7$			
8	4	30	=B8/($1+\$ \mathrm{~F}$ \$2 $)^{\wedge}$ A8			
9	5	30	$=\mathrm{B} / /(1+\$ \mathrm{~F} \text { \$2 })^{\wedge}$ A9			

Method 2: IRR rule (1)

- A commonly used decision rule in the private sector.
- The internal rate of return (IRR) is the discount rate such that the NPV of the project is set to zero.
- $\sum_{t=0}^{T} \frac{C F_{t}}{(1+l R R)^{t}}=0$.
- Rule:
- Accept project if $\operatorname{IRR} \geq$ required rate of return.
- Reject project if IRR $<$ required rate of return.
- Intuitively, if the IRR rule leads to acceptance, then the project is generating you a return higher than the next best use of your funds.

Method 2: IRR rule (2)

- Use Solver in excel.
- Found under Data \Rightarrow Analysis \Rightarrow Solver.

Method 2: IRR rule (3)

- This decision rule is intuitive, but it has problems!
- Can have multiple IRRs.
- IRR may not exist!
- The warning sign is cash flows that alternate in sign many times between periods.
- Obviously also if the cash flows never change sign!

Method 2: IRR rule (4)

- Consider the following example:
- Receive $\$ 0.5$ at $t=0$.
- Pay $\$ 0.5$ at $t=1$.
- Receive $\$ 0.5$ at $t=2$.
- NPV $=0.5-\frac{0.5}{1+r}+\frac{0.5}{(1+r)^{2}}$.
- NPV function never crosses the r axis for any $r \in[0,1]$.

Method 3: payback rule (1)

- The amount of time required for an investment to generate after-tax cash flows that are sufficient to cover the initial cost.
- This method is evil. It doesn't take account of the time value of money or risk!
- Very intuitive though.
- Rule:
- Accept if the payback period is less than some specified amount of time.
- Reject if the payback period is greater than some specified amount of time.

Method 3: payback rule (2)

- Just look for the year such that the total positive cashflows exceed the initial investment.
- Payback period for project A is between four and five years.
- We'd accept the project if the cutoff was 5 years or above.

Evaluating project A			
\mathbf{c}		Amount to be made	Cumulative CF(t)
0	-100	100	
1	30	100	30
2	30	100	60
3	30	100	90
4	30	100	120
5	30	100	150

Method 4: discounted payback rule (1)

- The length of time for the discounted cash flow receipts to offset the initial cost.
- Rule:
- Accept if discounted payback year is less than specified cutoff year.
- Reject if discounted payback year is above specified cutoff year.
- Again we require an arbitrary cutoff year.
- At least this method accounts for discounting though!

Method 4: discounted payback rule (2)

- Again the discounted payback period is between four and five years.
- Same conclusion as payback rule.

Evaluating project A						
					r	0.05
t	CF(t)	Amount to be made	PV CF(t)	Cumulative PV CF		
0	-100	100	-100		NPV	29.8843
1	30	100	28.57143	28.57142857		
2	30	100	27.21088	55.78231293		
3	30	100	25.91513	81.69744088		
4	30	100	24.68107	106.3785151		
5	30	100	23.50578	129.8843001		

Method 5: profitability index (1)

- Measures the benefit per unit of upfront cost.
- $P I=\frac{P V_{1}}{C_{0}}$ where $P V_{1}$ is the present value of positive cash flows starting next period onwards and C_{0} is upfront cost.
- A PI value of 1.2 means that we create an additional $\$ 0.2$ of value per dollar of investment up front.
- Rule:
- Accept if $P I \geq 1$ (creates value).
- Reject if $P I<1$ (destroys value).
- Not getting an idea of the absolute value created though.

Method 5: profitability index (2)

- Would accept project A under the PI rule.

Evaluating project A				
			r	0.05
t	CF(t)	PV CF(t)		
0	-100	-100	PI	1.298843
1	30	28.57143		
2	30	27.21088		
3	30	25.91513		
4	30	24.68107		
5	30	23.50578		

Takeaways

- NPV rule is supreme!
- Other rules might be used because they are more intuitive.
- Other rules though can be inconclusive or lead to wrong investment decisions being made.
- Payback can be badass (see below), but not when it comes to decision-making!

[^0]: ${ }^{1}$ Departments of Economics and Finance, UW-Madison.

