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Motivation

@ We're all used to seeing the representative agent framework.

@ Such a setup need not assume that there is literally only one agent,
but rather a degenerate distribution across agents.

@ l.e. a representative agent setup abstracts from thinking about
cross-sectional dispersion.
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Motivation

@ But the cross-section can have implications for aggregates!

Especially in policy settings.

e E.g. HANK (heterogeneous agent new Keynesian) models.

Kaplan, Moll and Violante (2018, AER), “Monetary Policy According
to HANK" ...
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Motivation

We revisit the transmission mechanism from monetary policy to
household consumption in a Heterogeneous Agent New Keynesian
(HANK) model. The model yields empirically realistic distribu-
tions of wealth and marginal propensities to consume because of
two features: uninsurable income shocks and multiple assets with
different degrees of liquidity and different returns. In this environ-
ment, the indirect effects of an unexpected cut in interest rates,
which operate through a general equilibrium increase in labor de-
mand, far outweigh direct effects such as intertemporal substitu-
tion. This finding is in stark contrast to small- and medium-scale
Representative Agent New Keynesian (RANK) economies, where
the substitution channel drives virtually all of the transmission
from interest rates to consumption. Failure of Ricardian equiv-
alence implies that, in HANK models, the fiscal reaction to the
monetary expansion is a key determinant of the overall size of the
macroeconomic response.
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Motivation

@ Yours truly also wrote a job market paper (a long time ago) looking
at the effect of policy changes in the face of firm heterogeneity.

@ For the particular policy | studied, the change has close to no effect
on the economy in a representative firm framework.

@ Does in fact have a quantitatively significant impact with
heterogeneous firms and selection effects.

@ Changes in the cross-section can aggregate to affect the
macroeconomy!
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Motivation

@ In this course, we'll focus mainly on studying heterogeneity on the
household side.

@ The concepts extend relatively easily to the firm-side.

A really good source for firm stuff is Chris Edmond’s website.

Chris is the man.
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Motivation

@ Household models of heterogeneity are often referred to as incomplete
markets models.

@ Why? Because one can show a model with heterogeneity and
complete markets is isomorphic to a representative agent economy.
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Motivation

@ Bewley incomplete markets models made quantitative by Hugget and
Aiyagari:

o Huggett, (1993), “The Risk-Free Rate in Heterogeneous Agent
Incomplete-Insurance Economies”, Journal of Economic Dynamics and
Control, 17, pp. 953-969.

o Aiyagari (1994), “Uninsured ldiosyncratic Risk and Aggregate Saving”,
Quarterly Journal of Economics, 109(3), pp. 659-684.
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Occasionally Binding Constraints Spencer (Nottingham)

Borrowing Constraints

Before we jump-into one of these GE idiosyncratic agent models, let's
think a bit more about constraints.

The households can borrow and save through one period discount
bonds.

Savings denoted by a; = 0.

Borrowing denoted by a; < 0.

Discount bond price at time t given by q; < 1.
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Occasionally Binding Constraints Spencer (Nottingham)

Borrowing Constraints

@ There must be some limit to borrowing, otherwise these self-obsessed
agents will start running ponzi schemes!

o Easiest is to assume some exogenous debt limit
ar = a

for some a < 0.
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Occasionally Binding Constraints Spencer (Nottingham)

Household Problem

@ Household solves

e}

max  Eg » B'U(c)
{et,arr1}i, ;)

subject to

Ct+ Grary1 S art+y
= a

at+1

where y is some fixed endowment of income.
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Occasionally Binding Constraints Spencer (Nottingham)

Borrowing Constraints

@ Bellman equation with the constraint
V(a) = U(a+y—c—qd)+BV()+ua - a)

where 1 = 0 is the Lagrange multiplier on the borrowing constraint.
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Occasionally Binding Constraints Spencer (Nottingham)

Borrowing Constraints

e FOC
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Occasionally Binding Constraints Spencer (Nottingham)

Borrowing Constraints

@ Euler equation

qU'(c) = BU'(') +
= U'(c) =g 'BU' () +q '

or can alternatively think of this as an Euler inequality
U'(c)=q 'pU'(c")

@ We call these constraints occasionally binding, since p =0
sometimes, meaning we get our traditional Euler equation back.
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Occasionally Binding Constraints Spencer (Nottingham)

Borrowing Constraints: Implementation

@ How do we account for the constraint in our computations?
@ These constraints look intimidating. They're no big deal though...

@ ...provided that you're coding the model up yourself.
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Occasionally Binding Constraints Spencer (Nottingham)

Borrowing Constraints: Implementation

@ When we code-up the model ourselves, accounting for an occasionally
binding constraint just involves an extra 3—4 lines of code.

@ Just manually adjust the value function such that the constraint is
accounted for.
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Occasionally Binding Constraints Spencer (Nottingham)

Borrowing Constraints: Implementation

@ In general, assume a household's control x’ must be above some
variable x(x).

@ |l.e. a function of your current state x.
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Occasionally Binding Constraints Spencer (Nottingham)

Value Function Iteration and Constraints
@ Augment the VFI algorithm. Say we use gridsearch.

@ If our value function is of the form

V(x,a) = max u(x,x',a) + BE,[V(X,a)]

x'zx(x)

Say we have an initial guess of Vy(x, a).

Find all the values associated with each candidate x’ € & where

Vilx,x',a) = u(x,x',a) + BE[Vo(x', )] if X' = x(x)
= —w if X' < x(x)

then the new value function is

Vi(x,a) = max [Vi(x,x',a)].

X/
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Occasionally Binding Constraints Spencer (Nottingham)

Value Function Iteration and Constraints

@ Everything is the same as before, except we need to adjust the value
function to prohibit choices that violate the constraint.

@ Just use an if statement.

o If constraint violated then new value function is really really negative
(e.g. -100000).

@ Agents will avoid these control choices since it leads to really negative
utility. Easy!

@ Obviously though, if you have an exogenous lower bound (say a for
assets), then you can just choose the lower bound on your grid to be
that (as we will in the problem set).
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RCE in Heterogeneous Agent Models Spencer (Nottingham)
Setup

@ We have all the ingredients to solve for a stationary equilibrium of one
of these models.

@ Huggett's (1993) model studies an endowment economy, while
Aiyagari's (1994) studies a production economy.

@ Today we'll talk about an endowment economy: | will mention a
couple of features of Aiyagari (1994) though.

@ We'll go into the production economy in a bit more detail in the next
lecture.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)
Setup

@ Assume a unit measure of agents.

@ Endowment economy with the usual preferences over consumption

Eo ), B'U(ct)
t=0
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RCE in Heterogeneous Agent Models Spencer (Nottingham)
Setup

e Idiosyncratic uncertainty with regard to employment status/earnings.
e Two states: employed (e) and unemployed (u).

@ Denote a households’ state for a given period by s; € {e, u}.

Denote their earnings by y:(s¢).
o If s; = e then y:(e) = 1.
o If st = u then y4(u) = b < 1.

Assume a Markov transition process across the states

7(s'|s) = Prob(s;y1 = §'|st = s)
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RCE in Heterogeneous Agent Models Spencer (Nottingham)
Setup

@ Again assume that households can save through discount bonds
subject to limit on borrowing.

o No aggregate uncertainty: means that g will be constant in the RCE.

e We'll solve for g endogenously such that there is equilibrium in the
bond market.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Household Problem

@ Household solves

{Ctyatﬂ}?io

e}
max [ Z BtU(cy)
t=0

subject to

Ct + Grary1 < ar + ¥t
ary1 = a

Vt,s:. Notice that income changes over time now.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Natural Borrowing Limit

e While Huggett (1993) takes a as given, Aiyagari (1994) allows
households to borrow up to their natural borrowing limit.

@ This is defined as the most that can be borrowed and repaid with
probability one across all possible histories.

@ See my slides from 2020 for more details.

@ We'll just assume the limit is exogenous.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Household’s Recursive Problem

@ We can write the Bellman equation as

v(s,a) = max U(y(s) +a—qa') + BEg[v(s', )]

where 4’ € [g, @)

@ Note that the upper-limit is to ensure the period utility function is
properly defined.

@ The solution to the problem will be a policy function for the asset
control &' = g(s, a).
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution

@ Everything's been pretty standard so far.

@ l.e. recursive household problem: thus far all we've done is add-in an
occasionally binding borrowing constraint.

@ But notice that households in the population will generally differ in
their asset holdings, since their states will generally differ.

@ Therefore we need to track what the cross-sectional dispersion is over
the state space.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution

@ Denote the measure over assets and employment status at time t by
w(S, o) where & and of are the spaces for employment and assets
respectively.

@ Notice that | used the word measure.

@ In a general RCE, this measure need not integrate to unity.

o E.g. if there is entry and exit of agents into the model: its integral
may sum to a number greater than one.

@ In this instance though, it'll integrate to one since we assumed a unit
mass of agents: we can interpret y; as a probability distribution.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution
o Exact law of motion.

e Takes as inputs p(s, a) current distribution, g(s, a) policy function
and transition probability 7(s’|s) and gives output

W) = | Lymgiean(sshuls. 2)ds da &

)

@ What's the measure of agents at (s’,a’)?

o It's the measure from last period who transition there.

o Effectively an endogenous Markov transition probability.

@ Note that the integral is needed since many (s, a) combinations can
potentially transition to (s’, a’).
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution

@ We can iterate on (1) to find the steady state measure.
e Give an arbitrary initial distribution (e.g. uniform).
o lterate until u(s,a) — u(s, a).

o l.e. until the distribution isn't changing.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution

@ Let's think about solving for the stationary distribution.

@ Assume that |§]| = ns and |&/| = na (discretised).
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e (e
Cross-Sectional Distribution: Recipe for Steady State

(1) Solve VFI to get g(s, a) (ap-policy-ind).

(2) Give initial distribution pq(s, a) (mu). E.g.

po(s,a) = Vse{l,..,ns},ae{l,...,na}

nans’
(3) Crunch the sum (discretised analogue of the integral) in (1)

mup = zeros(n_.A,n.S);

for a_ind = 1:n_A
for s_ind = 1:n_S
for sp.ind = 1:n_S

mup(ap-policy_-ind(a.ind, s_ind), sp-ind) = ...

mup(ap-policy_-ind(a-ind, s_ind), sp-ind) + Pi(s-ind, sp_ind)*mu(a-ind, s_ind)
end

end

end

gives update u1(s, a) (mup). Note (Pi) is the transition matrix.
(4) Check the distance ||u1(s,a) — po(s, a)||oo-

(5) Update uo(s,a) = pui(s, a) and repeat until convergence.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

o Let’s forget about assets A for a second and just follow some
€X0genous process s.

o If s is over a continuum:

pen(s) = [ 7 lopa(s)ds

S

@ Let's simplify and say s € {s1, s»}.
@ Law of motion would be

Hea1(s) = pels))n(]s1) + pue(s2)m(s'|s2)

Y, w(s'Is)nels)

se{s1,s2}
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

@ Let's parameterise with the following

050 0.50
~ [0.20 0.80

_ [o.10
Ft=10.90

per1(1) = pe(1)m(1,1) + pe(2)m(2,1)
— (0.1) % (0.5) + (0.9) = (0.2)
—0.05+0.18 = 0.23

@ Then

pe+1(2) = pe(D)m(1,2) + pe(2)w(2, 2)
— (0.1)  (0.5) + (0.9) % (0.8)
=0.05+0.72 =0.77
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

@ Another way to code this is with loops like in the above.
mup = zeros(n.S,1);
for s_ind = 1:n_S
for sp.ind = 1:n_S
mup(sp-ind) = mup(sp-ind) + mu(s_.ind)*Pi(s_.ind, sp.ind)
end
end

@ This crunches the expressions above, one piece at a time.

@ In our example with s € {s1, s}, we have 2x2 = 4 loop combinations.

o Let’s go through them one at a time.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

For s_ind =1 and sp_ind = 1

_[0.00] , [0.05
Fe+1 =109 .00( ™ {0.00

For s_ind =1 and sp_ind = 2

_ [0.05]
Fe+1 = 1 0.00

For s_ind = 2 and sp_ind = 1
[0.05]

B+l = 10.05

For s_ind = 2 and sp_ind = 2

Ht+1 =

0.00]
0.05|

[0.18]
0.00 ]

[0.00|

0.72)

_ [o.05
~ |0.00

_ [o0.05
~ 0.05

023
~ 0.77
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

@ Why go through the pain of this loopy approach rather than writing
the definitions of each element of w1 individually in the code?

@ As you scale-up your problem, you're increasingly likely to make
mistakes (e.g. n_S = 21).

@ This is easy with the loopy approach.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example
o Now let’s bring back assets A. Say a € {a1, a2}.
@ Say your household problem solution gives policy functions
d(a,s) = a» Va,s
i.e. they always choose ap.

@ Parameterise with

_ [0.50 0.50
T= 1020 0.80

025 0.25
Ht=1025 025
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

@ See then that

pe1(ar, s1) = Lo —(a s)m(s1ls1) e (a1, s1)
+ la1=a’(a1.,52)7r(51|52)Nt(31752)
+ Lo —a(ar,s)™(S151) 1t (32, 51)
+ 131:3/(32,52)7r(51|52),Ut(32,52)
=0

since 1, —u(a,,5) = 0.
@ Expression for pt11(a1,s2) = 0 similarly.

@ l.e. nobody is there since nobody chooses this level of assets.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

@ Then for (ap, s1)

Mt+1(a2’sl) = ﬂ32=3’(a1,51)77(51|51):ut(31751)
+ 132=3'(81,Sz)7r(51|S2)Mt(ala 52)
+ Lay—a(ap,s1)(S1]51) e (a2, 51)

+ ]lazza’(22752)7r(51|52)Mt(327 )

= (1) * (0.5) * (0.25) + (1) = (0.2) * (0.25)
4 (1) % (0.5) * (0.25) + (1) * (0.2) # (0.25)

= 0.125 + 0.050 + 0.125 + 0.050

= 0.350
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

@ Then for (ap, )

Mt+1(32,52) = ﬂ32=3’(a1,51)77(52|51):ut(31751)
+ 132=3'(81,Sz)7r(52|S2)Mt(ala 52)
+ Lay—o(ap,51) T (52]51) 12 (a2, 51)

+ ]lazza’(22752)7r(52|52)Mt(327 )

= (1) * (0.5) % (0.25) + (1) = (0.8) * (0.25)
+ (1) % (0.5) * (0.25) + (1) * (0.8) = (0.25)

= 0.125 + 0.200 + 0.125 + 0.200

= 0.65
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

@ Hence

~ J0.00 0.00
He+1 = 1435 (.65
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e (e
Cross-Sectional Distribution: Recipe for Steady State

Let's come back to:

mup = zeros(n.A, n.S);
for a.ind = 1:n_A
for s_ind = 1:n_S
for sp.ind = 1:n_S
mup(ap-policy_-ind(a-ind, s_ind), sp-ind) = ...
mup(ap-policy_ind(a_.ind, s_ind), sp.ind) + Pi(s_.ind, sp_ind)*mu(a.ind, s_ind)
end
end
end

Our example here is n_.S x n_Ax n_S = 2x2x2.

So the nested loops will fill a 2x2 array for j¢1 in 8 increments.

Let's go through them, one at at time.
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

@ a_ind =1, s_ind =1, sp_ind =1 gives

_ [o-000 0.000] , [0.000 0.000
Ft+1= 10,000 0.000

0.125 0.000

@ a_ind =1, s_.ind =1, sp_ind = 2 gives

M+l =

@ aind =1, s_ind =2, sp_ind =

Ht+1 =

@ aind =1, s_ind =2, sp_ind =

Ht+1 =

0.000 0.000]
0.125 0000

0.000 0.000]
0.125 0.125]

[0.000 0.000]

0.175 0125

_|_

_|_

_|_

[0.000 0.000]
0.000 0.125]

1 gives

[0.000 0.000]
0.050 0.000

2 gives
[0.000 0.000]

0.000 0.200

{0.000

0.125 0.000

[0.000 0.000]
0.125 0.125]

[0.000 0.000]

0.000]

0.175 0125
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Cross-Sectional Distribution: Example

@ a_ind =2, s_ind =1, sp_ind =1 gives

_[0.000 0.000 0.000 0.000] _ [0.000 0.000
Fe+1 =10 175 0.325 0.125 0.000| ~ |0.300 0.325

@ a_ind =2, s_.ind =1, sp_ind = 2 gives

_ [0.000 0.000] . [0.000 0.000]
Fr+1= 10300 0.325] " [0.000 0.125

@ a_ind =2, s_ind =2, sp_ind =1 gives

_ N [0.000 0.000] [0.000 0.000]
Heet = 0.050 0.000] ~ |0.350 0.450

@ a_ind =2, s_ind = 2, sp_ind = 2 gives

_ [0.000 0.000 +'0.000 0.000]  [0.000 0.000]
Fe+l = 10350 0.450] 7 [0.000 0.200] ~ |0.350 0.650
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RCE in Heterogeneous Agent Models Spencer (Nottingham)

Recursive Competitive Equilibrium Definition

@ A steady state recursive competitive equilibrium is a set of policy
functions (c, a’), a price g and an invariant cross-section p such that

e For the given g, the recursive program solves the household's
optimisation problem,

o Given the stationary cross-section, goods and asset markets clear
| rets.a) - y(sy1an =0
S,
f [4/(s, a)]dp = 0,
S,

@ L is a stationary measure: meaning that plugging p into the right-side
of (1) will return 4 on the left-side.
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ST
Algorithm for Finding RCE

@ Excess demand functions are your best friend!

@ Most basic way to solve this:
(a) Conjecture a price qo,

(b) Given qo, solve the household's recursive problem. Gives you the
corresponding policy functions for controls,

(c) lterate on the cross-sectional law of motion (1) until it converges,

(d) Find the excess demand for assets. If it's close to zero, stop. If not,
update the bond price as follows:

o If excess demand is positive, increase q,

o If excess demand is negative, decrease q.

(e) Return to step (b) using your updated price.
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ST
Algorithm for Finding RCE

In the updating step, (d), you can just use the bisection method!

e E.g. set g, =1 and g, = € and then the initial guess is qo = q“"Tﬂ”’.

If your excess demand is positive, set g, = qo.

If your excess demand is negative, set q,» = qo.
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Takeaways

@ If you can implement all these techniques from today, you open-up a
world of truly exciting research questions that you can answer.

@ Get to work!
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