Lecture 5: Theory of Corporate Finance IV Costly Bankruptcy

Adam Hal Spencer

The University of Nottingham
Advanced Financial Economics 2019

Roadmap

(1) Introduction

(2) Model Environment

(3) Model Equilibrium

4. Conclusion

Motivation

- Have we thought about bankruptcy in our analysis so far?
- Yes! When the firm defaults, it hands-over the firm's capital to the creditors.
- They liquidate it and that's that.
- But here, bankruptcy didn't come at a cost.
- It's usually an expensive procedure that involves legal fees and a lot of drama.

Motivation

- When we thought about debt tax shields, we saw that if that was the only friction, then the firm should borrow as much as they can.
- What happens now if there is some cost of bankruptcy, which depends on the level of the firm's debt?
- It will give us an interior solution for borrowing!
- What we observe in the real world. Makes a lot more sense.

Roadmap

(1) Introduction

(2) Model Environment

(3) Model Equilibrium

4. Conclusion

Setup

- Abstract from taxes for now, (we'll add them back in later).
- If the firm defaults, the creditors incur legal expenses.
- Why don't the debtors pay these expenses?
- Because they have limited liability. They're underwater anyway, so they just walk away from the situation.
- The creditors need to pay the bankruptcy costs to recover some of their funds.

Setup

- In the event of bankruptcy, assume that a cost function of the following form is incurred:

$$
\Omega(b)=\omega b^{2} .
$$

- Says that the cost is increasing and convex in the amount the firm borrows.
- Does this make sense? Says that the more the firm borrows, the more expensive the bankruptcy legal fees are. These fees are increasing at an increasing rate.

Setup

- Again, work with the same model from lecture 2.
- We'll again think about the two period model with $\theta \in\{0,1\}$ for productivity and production function θk^{α}.
- Firm produces when $\theta=1$ and defaults for $\theta=0$ with ξk being the proceeds from liquidating the firm.
- Firm borrows an amount b with endogenous interest rate r set by lenders such that the lenders break even.

Roadmap

(1) Introduction

(2) Model Environment
(3) Model Equilibrium

4) Conclusion

Lender's problem

- The lender's problem changes to account for the fact that these costs are incurred in the event of bankruptcy.
- The lender demands interest rate r such that

$$
\begin{aligned}
-b+\beta\{p b(1+r)+(1-p)[\xi k-\Omega(b)]\} & =0 \\
-b+\beta\left\{p b(1+r)+(1-p)\left[\xi k-\omega b^{2}\right\}\right. & =0
\end{aligned}
$$

- See that the creditors still break even, but now there is this loss incurred in the default state.
- Intuitively, without doing any math, what does this mean with regard to the interest rate that they demand?
- Higher: to compensate for bigger losses in the default state.

Lender's problem

- Can solve for the interest rate demanded as (divide through by b)

$$
\begin{aligned}
& -1+\beta\left\{p(1+r)+(1-p)\left[\xi \frac{k}{b}-\omega b\right]\right\}=0 \\
\Rightarrow & r=\frac{1}{p}\left[\frac{1}{\beta}-(1-p)\left\{\xi \frac{k}{b}-\omega b\right\}\right]-1
\end{aligned}
$$

does this make sense?

- Increase the cost scaling parameter ω, leads to a rise in the interest rate demanded.

Ex-ante v.s. ex-post

- This is an interesting result.
- Although the creditors incur the default costs in the event of bankruptcy, they pass this cost on to the firm in expectation through a higher interest rate.
- Creditors bear the default costs ex-post.
- Debtors bear the default costs ex-ante.
- How does this then affect the firm's problem?

Firm's problem

- Firm's problem then given by

$$
\max _{\{b, k\}} v=-k+b+\beta p\left[k^{\alpha}-b(1+r)\right]
$$

subject to

$$
r=\frac{1}{p}\left[\frac{1}{\beta}-(1-p)\left\{\xi \frac{k}{b}-\omega b\right\}\right]-1
$$

which means that $\frac{\partial r}{\partial b}$ will change!

- An increase in the firm's borrowings now has a larger effect on their borrowing costs.

Firm's solution

- Derivative with respect to investment given by

$$
\begin{aligned}
\frac{\partial v}{\partial k} & =-1+\beta p\left[\alpha k^{\alpha-1}-b \frac{\partial r}{\partial k}\right] \\
& =-1+\alpha \beta p k^{\alpha-1}+b \beta p \frac{1}{p}(1-p) \xi \frac{1}{b} \\
& =-1+\alpha \beta p k^{\alpha-1}+\beta(1-p) \xi
\end{aligned}
$$

...unaffected.

Firm's solution

- Derivative with respect to debt

$$
\begin{aligned}
\frac{\partial v}{\partial b} & =1-\beta p\left[(1+r)+b \frac{\partial r}{\partial b}\right] \\
& =1-\beta p\left[\frac{1}{p}\left\{\frac{1}{\beta}-(1-p)\left\{\xi \frac{k}{b}-\omega b\right\}\right\}+b\left\{\frac{1-p}{p}\left(\xi \frac{k}{b^{2}}+\omega\right)\right\}\right] \\
& =1-\beta\left\{\frac{1}{\beta}-(1-p)\left\{\xi \frac{k}{b}-\omega b\right\}\right\}-\beta b(1-p)\left(\xi \frac{k}{b^{2}}+\omega\right) \\
& =1-1+\beta(1-p)\left\{\xi \frac{k}{b}-\omega b\right\}-\beta(1-p)\left[\xi \frac{k}{b}+\omega b\right] \\
& =-\beta(1-p) \omega b-\beta(1-p) \omega b \\
& =-2 \beta(1-p) \omega b
\end{aligned}
$$

does this make sense?

- The derivative is always negative for $b>0$.

Firm's solution

- When the only present financial friction is costly default, then the firm won't take any debt.
- There's only a cost in this case: no advantage.
- Opposite problem to the taxes lecture.
- We need a reasonable theory of optimal borrowing!

Trade-off theory

- When we include both costly default and debt tax shields, we get what the finance guys refer to as the trade-off theory.
- When we include each friction separately we get weird results: either maximal debt or none.
- Include both frictions at the same time: gives us an interior solution.

Trade-off theory: firm's problem

- Firm's problem now given by

$$
\max _{k, b} v=-k+b+\beta p\left\{(1-\tau) k^{\alpha}-b(1+r[1-\tau])\right\}
$$

subject to

$$
r=\frac{1}{p}\left[\frac{1}{\beta}-(1-p)\left\{\xi \frac{k}{b}-\omega b\right\}\right]-1
$$

Trade-off theory: firm's solution

- Investment derivative is the same as in the case with debt tax shields.
- Debt derivative is now

$$
\begin{aligned}
\frac{\partial v}{\partial b}= & 1-\beta p\left[(1+r[1-\tau])+b(1-\tau) \frac{\partial r}{\partial b}\right] \\
= & 1-\beta p\left(1+\left\{\frac{1}{p}\left[\frac{1}{\beta}-(1-p)\left(\xi \frac{k}{b}-\omega b\right)\right]-1\right\}[1-\tau]\right) \\
& -\beta p\left\{b(1-\tau)\left[\frac{1}{p}(1-p)\left(\xi \frac{k}{b^{2}}+\omega\right)\right]\right\} \\
= & \tau(1-\beta p)-2 \beta(1-\tau)(1-p) \omega b
\end{aligned}
$$

Trade-off theory: firm's solution

- The optimal debt choice involves setting this derivative equal to zero and solving for b

$$
\begin{aligned}
\tau(1-\beta p)-2 \beta(1-\tau)(1-p) \omega b & =0 \\
\Rightarrow b & =\frac{\tau(1-\beta p)}{2 \beta(1-\tau)(1-p) \omega}
\end{aligned}
$$

does this make sense?

- We've found an interior solution for borrowing!
- Consistent with the data: firms hold some intermediate level of debt, not infinite or zero only.

Roadmap

(1) Introduction

(2) Model Environment

(3) Model Equilibrium

Summary

- Introduced a cost in the case of default.
- When combined with debt tax shields, this gives an interior solution for borrowings!

