FIN 325 Corporate Finance L6 (Theory): Tax Benefits of Debt under APV Method

Instructor: Adam Hal Spencer¹

Summer 2016

¹Departments of Economics and Finance, UW–Madison.

- In L6 we saw that firm value was independent of capital structure under certain conditions.
- The traditional assumption to relax first is that there are **no taxes**.
- Perhaps the most obvious violation of the MM assumptions!

Corporate tax rates across the OECD

Source: 2013 OECD Tax Database

Produced by Veronqiue de Rugy, Mercatus Center at George Mason University.

- Interest payments are tax deductible in the United States.
- Paid out of **before** tax earnings.
- Holding all else equal, a higher level of interest payments reduces the firm's taxable income.
- Debt financing has an **additional benefit** over equity financing along this channel.

Tax deductibility of interest (2)

- Consider two firms Firm Unlevered and Firm Levered.
- Firm Unlevered is 100% equity while Firm Levered borrowed \$1,000 worth of debt at 8% interest.
- Assume that capital expenditures, depreciation and the change in net working capital are zero.

	Firm Unlevered	Firm Levered
EBIT	500	500
Interest	0	80
Pretax income	500	420
Tax (35%)	175	147
Net income to shareholders	325	273
Total income to D and E	325 + 0 = 325	273 + 80 = 353
Tax shield from debt	0	28

• Total cash flow from Firm Levered is 28 higher — known as the **debt tax** shield (DTS).

Tax deductibility of interest (3)

• Firm Unlevered is 100% equity while Firm Levered borrowed \$D worth of debt at r_D % interest.

	Firm Unlevered	Firm Levered	
EBIT	C	С	
Interest	0	r _D D	
Pretax income	С	$C - r_D D$	
Tax (35%)	$\tau^{c}C$	$\tau^{C}(C - r_{D}D)$	
Net income to shareholders	$(1-\tau^{C})C$	$(1-\tau^{C})(C-r_{D}D)$	
Total income to D and E	$(1-\tau^{C})C$	$(1-\tau^{C})C + \tau^{C}r_{D}D$	
Tax shield from debt	0	$\tau^{C}r_{D}D$	

• Value from having debt of D at interest rate of r_D is $\tau^C r_D D$.

Valuation of tax shields

• If a firm takes-out some debt worth D at an interest rate of r_D for T periods

$$PV(DTS) = \sum_{t=1}^{T} \frac{\tau^{C} r_{D} D}{(1+r^{*})^{t}}.$$
(1)

• If the debt is assumed to be held in perpetuity, then

$$PV(DTS) = \frac{\tau^{C} r_{D} D}{r^{*}}.$$
 (2)

• What discount rate should we use for r^* in (1) and (2)?

Discount rate for tax shields

- What discount rate should we use for r^* in the tax shields formula?
- The rate should reflect the riskiness of the tax shield payments.
 - (1) r_D : reflects the risk of the debt that generates the tax shields.
 - (2) r_A : reflects the risk of the corporate profits, which we need to generate tax shields.
 - (3) r_E : gives a conservative estimate of the risk.
- When we set $r^* = r_D$ then the formula for (2) simplifies

$$PV(DTS) = \tau^{C}D$$

- A method for evaluating firms and projects.
- Say that a project is to be financed using debt **and** equity.
- APV method looks at a **counterfactual** where the project is 100% equity-financed then adds-in the tax benefits of debt.
- Explicitly separates the project's cash flows that are associated with **real** operations and **financing**.

Adjusted present value method (APV) (2)

- Refer back to slide (6) with Firm Unlevered and Firm Levered.
- Let's assume that their cash flows are perpetual.
 - I.e. each firm has project cash flows of *C* each period while Firm Levered has debt of *D* maintained in perpetuity.
- Denote the value of Firm Unlevered and Firm Levered by V_U and V_L respectively.

$$V_U = PV[(1 - \tau^C)C]$$

$$V_L = PV[(1 - \tau^C)C + \tau^C r_D D],$$

which can be combined to get

$$V_L = V_U + PV(DTS), \tag{3}$$

which is known as the **APV formula**.

• We'll make some more adjustments to equation (3) in future lectures.

- When calculating the APV of a new project, always use the **incremental** debt.
- τ^{C} is the **marginal** tax rate; not the average.
 - Need to look at the tax that you'll be charged on marginal debt.
- When we have positive taxes, we can create value by purely changing firm's capital structure, (see example later).

Personal taxes (1)

- Investors in the firm need to pay additional taxes, (e.g. capital gains and dividends).
- The cash flow to individual investors net of all taxes is what's important.

	C-Corporation			Individual	
	Ordinary	Capital	Ordinary		Capital
	Income	Gains	Income	Dividends	Gains
Time Period	(τ _c)	$(\tau_{c,cg})$	(τ _p)	(τ _{p,div})	(τ _{p,cg})
Pre-1981	46.0%	28.0%	70.0%	70.0%	28.0%
1982-1986	46.0%	20.0%	50.0%	50.0%	20.0%
1987	40.0%	28.0%	39.0%	39.0%	28.0%
1988-1990	34.0%	34.0%	28.0%	28.0%	28.0%
1991-1992	34.0%	34.0%	31.0%	31.0%	28.0%
1993-1996	35.0%	35.0%	39.6%	39.6%	28.0%
1997-2000	35.0%	35.0%	39.6%	39.6%	20.0%
2001-2002	35.0%	35.0%	38.6%	38.6%	20.0%
2003-	35.0%	35.0%	35.0%	15.0%	15.0%

Source: Scholes et al. (2005), Taxes and Business Strategy (3rd ed), Table 1.1, p. 12

Personal taxes (2)

- Denote τ^i the personal tax rate paid on **interest/ordinary income**.
- Denote τ^e the personal tax rate on **dividends**.

	Flow to debtholders	Flow to equityholders
Amount to distribute	1	1
Corporate taxes	0	$ au^{C}$
Income after corporate tax	1	$1- au^{C}$
Personal taxes	$ au^{i}$	$(1- au^{\mathcal{C}})(1- au^{e})$
Investor flow after tax	$(1- au^i)$	$(1- au^{\mathcal{C}})(1- au^{e})$

- See that there is no corporate tax liability for interest paid to debtholders.
- Tax benefit to debt if $(1 \tau^i) > (1 \tau^c)(1 \tau^e)$.
 - Has been the case historically.

Personal taxes (3)

• When debt is held in **perpetuity** then

ŀ

$$\mathcal{PV}(DTS) = D\tau^*$$

 $\tau^* = rac{(1 - \tau^i) - (1 - \tau^c)(1 - \tau^e)}{1 - \tau^i},$

which is expressed as a percentage. Derivation from Miller (1977).

- When τ^i is high, the tax advantage of debt is smaller.
- When $\tau^e = \tau^i$ then $PV(DTS) = \tau^C D$ as before.

Personal taxes (4)

- How does τ^* vary with τ^i ?
- Fix $\tau^{C} = 0.35$ and $\tau^{e} = 0.15$ and vary τ^{i} from 0 to 0.5 (below).

What about negative earnings before tax (EBT)?

- EBT defined as EBIT less interest expenses.
- If this measure is negative, then things get complicated...
- Need to take account of carryforwards and carrybacks for the operating losses.
 - Do we deduct the losses against previous or future losses?
- We won't worry about this case in the course.

Example 1: leveraged recapitalisation

- Firm Pure has 1b shares outstanding, which are trading at \$640 per share.
- The firm is currently 100% equity.
- Assume that $\tau^{C} = 0.35$ and $r_{D} = 0.03$ while all personal tax rates are zero.
- Say that the firm issues \$100b in perpetual debt and uses the proceeds to **repurchase shares**.
 - (a) What happens to the share price? What is the value of the debt tax shield?
 - (b) What is the firm's value after the recap?
 - (c) How many shares are repurchased and at what price?
 - (d) Who gains and loses from the recap?
 - (e) What happens to the price at announcement?

Example 1 solution (1)

• The firm was originally 100% equity so $V_U = $640 \times 1b = $640b$.

• With the new debt, we can use APV to get

$$V_L = V_U + PV(DTS) = \$640b + \$100(0.35)b = \$675b$$

where I just assumed that the debt was perpetual and r_D was the appropriate discount rate.

• Use the two equations and two unknowns approach to find the new share price and the number of shares repurchased.

$$S imes P_{new} = \$100b$$

 $P_{new} = rac{\$675b - \$100b}{1b - S}$

which can be solved to get $P_{new} =$ \$675 and $S = \frac{100}{675}b$.

Example 1 solution (2)

• Price response at time of announcement due to forward-looking investors.

• Assumes that the announcement comes as a surprise to the investors!

- Now assume that there are personal tax rates of $\tau^e = 0.15$ and $\tau^i = 0.35$. Repeat the previous exercise!
- Give an intuition for the different price that the shares rise to on announcement relative to part 1.

Example 1 [part 2] solution (1)

• The effective tax benefit of debt is given by

$$au^* = 1 - rac{(1 - au^C)(1 - au^e)}{1 - au^i} = 0.15$$

• Then the present value of the DTS is PV(DTS) = \$15b.

•
$$V_L = $640b + $15b = $655b$$
.

$$SP_{new} = \$100b$$

 $P_{new} = rac{655 - 100}{1 - S}$

which can be solved for $S = \frac{100}{655}$ and $P_{new} =$ \$655.

 The price rise is now smaller given that there is less of a tax benefit of debt due to τⁱ > 0.

Takeaways

- Introduce taxes into our capital structure model: debt has an advantage over equity.
- APV method says that $V_L = V_U + PV(DTS)$.
- But then the firm should logically **max-out** on debt relative to equity! Take out 99.9999...% debt!
- Why don't firms do this in reality?....Hold your breath until a couple of lectures time!

