Lecture 8: Empirical Methods in Corporate Finance I

Adam Hal Spencer

The University of Nottingham

Advanced Financial Economics 2019

Roadmap

2 Basic Regression Model

3 Forms of Endogeneity

Motivation

- The theory section gave us some qualitative insights into how the five financial frictions affect firm value, investment behaviour and capital structure.
- In the remainder of the corporate finance part of this course, we ask the question of, which frictions matter the most in the real world?

Data

• There are three broad classifications of data.

(1) Cross-section
$$(i \in \{1, 2, ..., N\})$$
 [fixed time].

(2) Time series:
$$(t \in \{1, 2, ..., T\})$$
 [fixed variable].

(3) Panel: (*it* with $i \in \{1, 2, ..., N\}$ and $t \in \{1, 2, ..., T\}$).

Roadmap

Linear regression

 A simple cross-sectional (population) linear regression model typically takes the form

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots + \beta_M x_{M,i} + u_i$$
(1)

where

- *y_i* is the outcome or dependent variable.
- $\{x_{1,i}, x_{2,i}, ..., x_{M,i}\}$ are the explanatory variables.
- $\{\beta_0, \beta_1, ..., \beta_M\}$ are the coefficient parameters to be estimated.
- *u_i* is an unobservable random error or disturbance term.
- The objective is to get estimates of the regression coefficients.
- We would like to be able to say, "an increase in x_{1,i} of 1 unit leads to an increase in y_i of β₁ units."

Linear regression

- One can think of the terms involving the regression coefficients as a "model".
- I mean the word model here in the reduced-form sense, (c.f. the structural sense). More on this later.
- It's designed to be the movements in the dependent variable that are captured by changes in the explanatory variables.
- *u_i* you can think of as everything exogenous to our model.

Ordinary least squares (OLS)

- The most common way to estimate a regression equation is to use OLS.
- This estimator finds the coefficients that minimise the sum of squared residuals.
- Intuitively: minimises the sample equivalent squared "*u_i*" term in the regression specification (1).

Ordinary least squares (OLS)

• Re-write equation (1) in vector form

$$y_i = \beta x_i + u_i$$

where β and x_i are now vectors containing all the individual terms.

• Define the sum of squared residuals (SSR) as

$$\Omega(\beta) = \sum_{i=1}^{N} (y_i - \beta x_i)^2.$$

• The OLS estimator $\hat{\beta}$ is defined as

$$\hat{eta} = \min_{eta} \Omega(eta)$$

• OLS chooses the coefficients to minimise the distance of the observed data from the regression model.

Ordinary least squares (OLS)

• The expression for the solution is given by

$$\hat{\beta} = \left(\sum_{i=1}^{N} x_i' x_i\right)^{-1} \left(\sum_{i=1}^{N} x_i' y_i\right)$$

in vector notation. For the simpler version of $y_i = \beta_0 + \beta_1 x_i$ for just one regressor, we get

$$\hat{eta}_1 = rac{\mathsf{Cov}(x,y)}{\mathsf{Var}(x)}$$

 $\hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$

Goodness of fit

- Once we have our estimates, we can assess the fit of the linear model.
- Define fitted values of the dependent variable as $\hat{y}_i = \hat{\beta} x_i$.
- The values of the dependent variable, which are predicted by the OLS estimates given the explanatory variable values.
- Coefficient of determination (R-squared) is a measure of goodness of fit, (how close does \hat{y}_i get to y_i)?
- Defined as

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$$

where y_i is the observed value, \hat{y}_i is the fitted value and \bar{y} is the sample mean.

Consistency of OLS

- A consistent estimator is such that estimates of a population parameter converge to the truth for asymptotically large samples.
- Denote this by $\hat{\beta}_i \to \beta_i$.
- OLS estimates are consistent provided that the following assumptions hold
- (1) The sample is random,
- (2) The error term is zero in expectation,
- (3) There are no linear relationships between the explanatory variables,

(4) The error term is uncorrelated with the explanatory variables.

Endogeneity

- Asymptotic consistency is a good thing: means we're getting pretty close to the truth with the estimates.
- Endogeneity is when the error term is correlated with the explanatory variables, (i.e. assumption (4) fails).
- With endogeneity, our OLS estimates are no longer consistent!

What does endogeneity mean for corporate finance?

• A corporate finance researcher may be interested in a regression of the form

 $Leverage_i = \beta_0 + \beta_1 Profitability + u_i$

where Leverage_i is the debt to equity ratio of the firm and Profitability is their net profits.

- Want to estimate: a 1 unit increase in profitability leads to a β_1 unit increase in leverage.
- Do we think that this is exogenous, (i.e. all good, the opposite of endogeneity).
- If we ran this regression in the presence of endogeneity, what would β_1 mean?

Roadmap

Forms

- Endogeneity comes in a variety of forms.
- (i) Omitted variables,
- (ii) Simultaneity,
- (iii) Measurement error.

Omitted variables

- Probably the most obvious case.
- Say that the true economic relation is given by

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + \gamma w_i + u_i$$

but we don't see anything about the variable w_i . So we run

$$y_i = \beta_0 + \beta_1 x_{1,i} + \beta_2 x_{2,i} + v_i$$

where now $v_i = \gamma w_i + u_i$.

Omitted variables

- If w_i is uncorrelated with $x_{1,i}$ and $x_{2,i}$, then we're good.
- Say that w_i is correlated with $x_{1,i}$ but uncorrelated with $x_{2,i}$.
- Rare that this will be the case in corporate finance, but if it were, then β̂₂ would still be consistent, (i.e. β̂₂ → β₂).
- However in the limit $\hat{\beta}_1 \to \beta_1 + \gamma \frac{\operatorname{cov}(x_j, w)}{\operatorname{Var}(x_i)}$.
- I don't expect you to prove this: just understand the following intuition.
- The asymptotic bias is made up of the effect of the omitted variable on the dependent variable γ and the effect of the independent variable cov(x_j,w)/Var(x_j).

Omitted variables: in corporate finance

- What could w_i be in corporate finance?
- Information asymmetry: what is this?
- Very abstract concept. It can't be accurately measured.
- How is it correlated with the independent variables?
- What does it mean for regression inference?

Simultaneity

- Does x cause y or is it the other way around?
- Also referred to as reverse causation.

Simultaneity: in corporate finance

- Regress the firms' market to book ratio on an index of anti-takeover provisions.
- Negative regression coefficient.
- Can we interpret this as: an increase in anti-takeover provisions leads to a loss in this value ratio?
- Or could it be that managers of low value firms adopt stronger anti-takeover provisions to entrench themselves?
- Correlation v.s. causation.

Simultaneity bias: example

• Say that variables x and y are determined simultaneously via the following system

$$y = \beta x + u$$
$$x = \alpha y + v$$

where u is uncorrelated with v.

• Think of y as the market-book ratio and x as anti-takeover provisions.

Simultaneity bias: example

- Say we just regress y on x, (ignore the second equation).
- See that the OLS regression coefficient will be

$$\hat{\beta} = \frac{\text{Cov}(x, y)}{\text{Var}(x)}$$
$$= \frac{\text{Cov}(x, \beta x + u)}{\text{Var}(x)}$$
$$= \beta + \frac{\text{Var}(x, u)}{\text{Var}(x)}.$$

....biased!

Measurement error

- Say that we only see a noisy proxy for the dependent variable.
- True regression model is $y_i^* = \beta x_i + v_i$ where y_i^* is the true dependent variable.
- We only observe $y_i = y_i^* + u_i$.
- See then that a regression of

$$y_i = \beta x_i + w_i$$

where $w_i = u_i + v_i$ lends itself to the same issues as omitted variable bias.

Measurement error

- What about measurement error in the independent variables?
- If we assume the error term is uncorrelated with all explanatory variables, we're good.
- If not, our estimates are again biased.
- Can lead to all of our coefficient estimates being biased, even if the error is only correlated with one explanatory variable.

Roadmap

- 2 Basic Regression Model
- 3 Forms of Endogeneity

- Say there are two groups of firms that are susceptible to a treatment. Use the following notation
 - Y_{1i} : outcome for firm *i* if exposed to treatment $(D_i = 1)$.
 - Y_{0i} : outcome for the same individual if not exposed $(D_i = 0)$.
- These two outcomes are referred to as potential outcomes since we only observe the following in the data

$$Y_i = Y_{1i}D_i + Y_{i0}(1 - D_i)$$

that is — we don't observe the counterfactual for any given individual.

- We want to understand the causal effect of the treatment.
- We'd figure that out by holding everything constant and looking at how a given individual is affected.
- Missing data: we don't see the counterfactual.

- Ok so we need to estimate average effects.
- Define the following two objects
 - Average treatment effect (ATE): $\alpha_{ATE} \equiv \mathbb{E}[Y_{1i} - Y_{0i}]$: the expected treatment effect of a subject randomly drawn from the population.
 - Average treatment effect on the treated (ATT): $\alpha_{ATT} \equiv \mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1]$: the expected treatment effect for a firm that has been treated.

• A standard measure for estimating the treatment effect is to estimate parameter

$$\begin{split} \beta &\equiv \mathbb{E}[Y_i|D_i = 1] - \mathbb{E}[Y_i|D_i = 0] \\ &= \mathbb{E}[Y_{1i}|D_i = 1] - \mathbb{E}[Y_{0i}|D_i = 0] \\ &= \{\mathbb{E}[Y_{1i}|D_i = 1] - \mathbb{E}[Y_{0i}|D_i = 1]\} + \{\mathbb{E}[Y_{0i}|D_i = 1] - \mathbb{E}[Y_{0i}|D_{0i} = 0]\} \end{split}$$

where the second line comes from adding and subtracting $\mathbb{E}[Y_{0i}|D_i=1].$

- What are these objects?
- Difference $\mathbb{E}[Y_{1i}|D_i = 1] \mathbb{E}[Y_{0i}|D_i = 1]$ is looking at the expected difference in the treated and untreated outcomes for an individual who has received the treatment.

• That is, we can decompose the estimator into

$$\beta = \alpha_{ATT} + B$$

where $\alpha_{ATT} \equiv \mathbb{E}[Y_{1i} - Y_{0i}|D_i = 1]$ from before and *B* is a selection bias term, given by

$$B = \mathbb{E}[Y_{0i}|D_i = 1] - \mathbb{E}[Y_{0i}|D_{0i} = 0]$$

- This bias term gives the difference in untreated outcomes for those who have been treated and have not been treated.
- A non-zero difference can stem from the situation where treatment status is the result of individual decisions where those with low Y_0 choose treatment more frequently than those with high Y_0 .

What does this mean for corporate finance?

• How did the Tax Cuts and Jobs Act (TCJA) in early 2018 affect the investment behaviour of firms?

Roadmap

- 2 Basic Regression Model
- 3 Forms of Endogeneity

4 Potential Outcomes

Summary

- My best friend in graduate school was an econometric theorist.
- He said "econometrics is all about trying to change one thing without changing another".
- This is the hard thing about data in social science: we can't run controlled experiments.
- It's hard to change an x variable without also changing something in the residual term u in economics.
- Experimental sciences can do this: have a controlled environment in a lab where only one thing is changed.

Summary

- OLS is a simple and powerful tool under the right assumptions.
- The big benefit is that we don't impose much structure on the relationship between the *y*s and *x*s.
- Hell can break loose in the face of endogeneity though. What fixes are there?