Lecture 9: New Keynesian Model Part II Price Stickiness

Adam Hal Spencer

The University of Nottingham

Advanced Monetary Economics 2020

Roadmap

(1) Introduction

(2) Calvo Model
(3) Rotemberg Model

4 Comparing the Two Models

(5) Conclusion

Motivation

- Last time we studied monopolistic competition in a static framework.
- If we were to extend this basic setup into a dynamic setting, (without including any other frictions), firms would adjust their prices each period.
- Now let's explore what happens when firms can no longer perfectly adjust their prices.

This Lecture

- We'll study two standard ways of capturing price rigidities.
(1) Calvo price stickiness,
(2) Rotemberg price stickiness.

Why are we Doing This?

- The old Keynesian paradigm pushes that monetary policy has an impact due to price rigidities.
- We want to formalise this idea.
- Last lecture: firms choose their own prices.
- Now what happens when we combine this with nominal frictions?
- Next lecture: how does this sticky price-setting spill-over to impact the macroeconomy?

Roadmap

(1) Introduction

(2) Calvo Model

3 Rotemberg Model

4 Comparing the Two Models

(5) Conclusion

Setup

- Reduced-form way of capturing price rigidities.
- Each period, a given firm has probability of θ that they will have the same price as last period.
- Complementary probability $1-\theta$ that they will be able to update their price.
- Green light for adjustment known colloquially as "receiving a visit from the Calvo fairy".
- Calvo (1983), "Staggered Prices in a Utility-Maximising Framework", Journal of Monetary Economics.

Law of Motion for the Price Level

- Firms in the model who update will all choose the same optimal price. Why? They're all effectively the same.
- Denote the optimal price by P_{t}^{*}.
- Recall the aggregate price index from the last lecture. Denote the set of firms, who keep the same price as last period, as $S(t) \subset[0,1]$ (with $S(t)^{\prime}$ the remainder).

$$
\begin{aligned}
P_{t} & =\left(\int_{0}^{1} P_{t}(j)^{1-\epsilon} d j\right)^{\frac{1}{1-\epsilon}} \\
& =\left(\int_{S(t)} P_{t}(j)^{1-\epsilon} d j+\int_{S(t)^{\prime}} P_{t}(j)^{1-\epsilon} d j\right)^{\frac{1}{1-\epsilon}} \\
& =\left[\theta\left(P_{t-1}\right)^{1-\epsilon}+(1-\theta)\left(P_{t}^{*}\right)^{1-\epsilon}\right]^{\frac{1}{1-\epsilon}}
\end{aligned}
$$

- What is the optimal reset price, P_{t}^{*} ?

Firm Objective

- Recall from last lecture that the firm objective was to simply maximise static profits.
- In a dynamic context without price rigidities, the objective is the same. Why?
- With price stickiness, we need to form some expectation over future profits though.
- In this dynamic context, assume productivity follows the process

$$
\log \left(A_{t}\right)=\rho \log \left(A_{t-1}\right)+\epsilon_{a, t}, \quad \epsilon_{a, t} \sim N\left(0, \sigma_{a}^{2}\right)
$$

Firm Objective

- The firm aims to maximise the discounted value of expected future profits.
- Need to take account of how the choice of optimal price today will impact profits in the future, conditional on being getting a sequence of red lights.
- What are the essential ingredients to calculating this object?
- Think of NPV analysis used in corporate finance/business classes to find the market value of a sequence of cash flows. We need to know:
- The cash flow values for each period,
- The appropriate discount factor.

Firm Objective

- In this case, the cash flows each period are the profits of the firm conditional on having the optimal price chosen at t.
- The discount factor is supposed to represent the opportunity cost of funds used in the project.
- The relevant agents to consider are the owners of the equity in the firm: the households here in this model.
- Recall the consumption Euler equation for the households in the MIU model

$$
q_{t}=\mathbb{E}_{t}\left[\beta\left(\frac{C_{t+1}}{C_{t}}\right)^{-\sigma} \frac{P_{t}}{P_{t+1}}(1)\right]
$$

where 1 was the nominal payoff of a bond and q_{t} was its price.

- The object $\beta\left(\frac{C_{t+1}}{C_{t}}\right)^{-\sigma} \frac{P_{t}}{P_{t+1}}$ is referred to as the one period ahead nominal stochastic discount factor for the household.

Firm Objective

- The value of the profits given the choice of P_{t}^{*} is found by discounting the k period ahead profits of the firm using the k period stochastic discount factor.
- Expected discounted profits

$$
\begin{aligned}
\Gamma_{t}(j) & =\mathcal{Q}_{t \rightarrow t} V_{t, t}(j)+\theta \mathbb{E}_{t}\left[\mathcal{Q}_{t \rightarrow t+1} V_{t, t+1}(j)\right]+\theta^{2} \mathbb{E}_{t}\left[\mathcal{Q}_{t \rightarrow t+2} V_{t, t+2}(j)\right]+\ldots \\
& =\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \theta^{k} \mathcal{Q}_{t \rightarrow t+k} V_{t, t+k}(j)\right\}
\end{aligned}
$$

where $V_{t, t+k}(j)$ is profit at $t+k$ with price chosen at t and $\mathcal{Q}_{t \rightarrow t+k}$ is the k period ahead stochastic discount factor

$$
\mathcal{Q}_{t \rightarrow t+k}=\beta^{k}\left(\frac{C_{t+k}}{C_{t}}\right)^{-\sigma} \frac{P_{t}}{P_{t+k}}
$$

k Period Ahead Profits

- What is the expression for $V_{t, t+k}(j)$?
- Firm faces demand curve at period $t+k$ given the optimal price set at t

$$
Y_{t, t+k}(j)=\left(\frac{P_{t}^{*}}{P_{t+k}}\right)^{-\epsilon} Y_{t+k}
$$

where $Y_{t, t+k}(j)$ denotes the demand for the firm's variety at $t+k$ given the price set at t and Y_{t+k} is aggregate output at $t+k$.

k Period Ahead Profits

- Can then write $V_{t, t+k}(j)$ as

$$
V_{t, t+k}(j)=P_{t}^{*} Y_{t, t+k}(j)-T C_{t+k}\left(Y_{t, t+k}(j)\right)
$$

where $T C_{t+k}\left(Y_{t, t+k}(j)\right)$ is the total cost at $t+k$.

- This is the total cost given factor prices at $t+k$ for producing the amount $Y_{t, t+k}(j)$ - the firm's level of demand given its time t reset.

Optimal Price

- FOC

$$
\frac{\partial \Gamma_{t}(j)}{\partial P_{t}^{*}}=0 \Rightarrow \mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \theta^{k} \mathcal{Q}_{t \rightarrow t+k} \frac{\partial V_{t, t+k}(j)}{\partial P_{t}^{*}}\right\}=0
$$

where

$$
\frac{\partial V_{t, t+k}(j)}{\partial P_{t}^{*}}=Y_{t, t+k}(j)\left[(1-\epsilon)+\epsilon \frac{1}{P_{t}^{*}} T C_{t+k}^{\prime}\left(Y_{t, t+k}(j)\right)\right]
$$

Since

$$
\begin{aligned}
\frac{\partial Y_{t, t+k}(j)}{P_{t}^{*}} & =(-\epsilon) \frac{1}{P_{t+k}}\left(\frac{P_{t}^{*}}{P_{t+k}}\right)^{-\epsilon-1} Y_{t+k} \\
& =-\frac{\epsilon}{P_{t}^{*}} Y_{t, t+k}(j)
\end{aligned}
$$

Optimal Price

- Why is there no derivative of the stochastic discount factor here?

Where to From Here?

- This FOC forms the basis for what's known as the new Keynesian Phillips curve.
- It's traditionally linearised: we'll do this next lecture.

Roadmap

(1) Introduction

(2) Calvo Model

(3) Rotemberg Model

4 Comparing the Two Models

(5) Conclusion

Setup

- This model assumes that firms can always opt to change their price, but doing so involves paying a quadratic adjustment cost of the form

$$
A C_{t}(j)=\frac{\lambda}{2}\left(\frac{\widetilde{P}_{t}^{*}}{\widetilde{P}_{t-1}^{*}}-1\right)^{2} Y_{t}
$$

where $\lambda>0$ captures the degree of price stickiness and \widetilde{P}_{t}^{*} denotes the optimal reset price.

- Rotemburg (1982), "Sticky Prices in the United States", Journal of Political Economy.

Firm Objective

- What are the cash flows we need to think about discounting in this problem?
- The choice of a new price today affects our profits today.
- But it can also affect our profits directly tomorrow. Why?
- Because in $t+1$, the re-set price \widetilde{P}_{t}^{*} will feature in the adjustment cost function

$$
A C_{t+1}(j)=\frac{\lambda}{2}\left(\frac{\widetilde{P}_{t+1}^{*}}{\widetilde{P}_{t}^{*}}-1\right)^{2} Y_{t+1}
$$

where l've just updated the time subscripts from earlier by one.

Firm Objective

- Any other future periods where today's price choice will have a direct effect?
- What about time $t+2$?
- Nope. The price chosen at $t+1$ will affect that (as in the previous slide).
- So price chosen at time t won't impact profits at $t+2$ directly.
- All these future derivatives will drop out from the FOC.

Firm Objective

- Again, firm seeks to maximise the discounted expected value of future profits for its shareholders

$$
\widetilde{\Gamma}_{t}(j)=\mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \mathcal{Q}_{t \rightarrow t+k} \widetilde{V}_{t+k}(j)\right\}
$$

where

$$
\widetilde{V}_{t+k}(j)=\widetilde{P}_{t}^{*} Y_{t+k}(j)-T C_{t+k}\left(Y_{t+k}(j)\right)-P_{t+k} A C_{t+k}(j)
$$

and

$$
Y_{t+k}(j)=\left(\frac{\widetilde{P}_{t}^{*}}{P_{t+k}}\right)^{-\epsilon} Y_{t+k}
$$

- Why am I multiplying the adjustment cost by the price index?

Optimal Price

- FOC

$$
\frac{\partial \widetilde{\Gamma}_{t}(j)}{\partial \widetilde{P}_{t}^{*}}=0 \Rightarrow \mathbb{E}_{t}\left\{\sum_{k=0}^{\infty} \mathcal{Q}_{t \rightarrow t+k} \frac{\partial \widetilde{V}_{t+k}(j)}{\partial \widetilde{P}_{t}^{*}}\right\}=0
$$

where

$$
\begin{aligned}
& \frac{\partial \widetilde{V}_{t}(j)}{\partial \widetilde{P}_{t}^{*}}=Y_{t}(j)+\widetilde{P}_{t}^{*} \frac{\partial Y_{t}(j)}{\partial \widetilde{P}_{t}^{*}}+T C_{t}^{\prime}\left(Y_{t}(j)\right) \frac{\partial Y_{t}(j)}{\partial \widetilde{P}_{t}^{*}}- \\
& \lambda\left(\frac{\widetilde{P}_{t}^{*}}{\widetilde{P}_{t-1}^{*}}-1\right) Y_{t} \frac{\widetilde{P}_{t}^{*}}{\widetilde{P}_{t-1}^{*}} \\
& \frac{\partial \widetilde{V}_{t+1}(j)}{\partial \widetilde{P}_{t}^{*}}=\lambda \frac{\widetilde{P}_{t+1}^{*}}{\left(\widetilde{P}_{t}^{*}\right)^{2}}\left(\frac{\widetilde{P}_{t+1}^{*}}{\widetilde{P}_{t}^{*}}-1\right) P_{t+1} Y_{t+1}
\end{aligned}
$$

Optimal Price

- Putting it all together yields (exercise: check)

$$
\begin{aligned}
& \left(\frac{\left(\widetilde{P}_{t}^{*}\right)}{P_{t}}\right)^{-\epsilon} Y_{t}-\frac{\widetilde{P}_{t}^{*}}{P_{t}} \epsilon\left(\frac{\left(\widetilde{P}_{t}^{*}\right)}{P_{t}}\right)^{-\epsilon-1} Y_{t}+T C_{t}^{\prime}\left(Y_{t}(j)\right) \epsilon\left(\frac{\left(\widetilde{P}_{t}^{*}\right)}{P_{t}}\right)^{-\epsilon-1} Y_{t} \frac{1}{P_{t}}- \\
& \lambda\left(\frac{\left(\widetilde{P}_{t}^{*}\right)}{\left(\widetilde{P}_{t-1}^{*}\right)}-1\right) \frac{Y_{t} P_{t}}{\left(\widetilde{P}_{t-1}^{*}\right)}+\lambda \mathbb{E}_{t}\left[Q_{t \rightarrow t+1} \frac{\left(\widetilde{P}_{t+1}^{*}\right)}{\left(\widetilde{P}_{t}^{*}\right)^{2}}\left(\frac{\left(\widetilde{P}_{t+1}^{*}\right)}{\left(\widetilde{P}_{t}^{*}\right)}-1\right) Y_{t+1} P_{t+1}\right] \\
& =0
\end{aligned}
$$

Roadmap

(1) Introduction

(2) Calvo Model

(3) Rotemberg Model

4 Comparing the Two Models

(5) Conclusion

Cross-Sectional Price Dispersion

- Is there a cross-section of different prices across the varieties?
- Rotemburg: none. Why? Firms will just re-adjust each period. All the same, so they set the same price.
- Calvo: in general, there will be dispersion. E.g. consider initial price index P_{0}.
$\Rightarrow P_{1}=\left[\theta\left(P_{0}\right)^{1-\epsilon}+(1-\theta)\left(P_{1}^{*}\right)^{1-\epsilon}\right]^{\frac{1}{1-\epsilon}}$
$\Rightarrow P_{2}=\left[\theta\left\{\theta\left(P_{0}\right)^{1-\epsilon}+(1-\theta)\left(P_{1}^{*}\right)^{1-\epsilon}\right\}+(1-\theta)\left(P_{2}^{*}\right)^{1-\epsilon}\right]^{\frac{1}{1-\epsilon}}$
$=\left[\theta^{2}\left(P_{0}\right)^{1-\epsilon}+\theta(1-\theta)\left(P_{1}^{*}\right)^{1-\epsilon}+(1-\theta)\left(P_{2}^{*}\right)^{1-\epsilon}\right]^{\frac{1}{1-\epsilon}}$
$\Rightarrow P_{3}=\left[\theta^{3}\left(P_{0}\right)^{1-\epsilon}+\theta^{2}(1-\theta)\left(P_{1}^{*}\right)^{1-\epsilon}+\theta(1-\theta)\left(P_{2}^{*}\right)^{1-\epsilon}+(1-\theta)\left(P_{3}^{*}\right)^{1-\epsilon}\right]$ and so on.

Induced Distortions

- Adjustment costs in Rotemburg are goods that come out of the resource constraint

$$
\begin{aligned}
Y_{t} & =C_{t}+\int_{0}^{1} A C_{t}(j) d j \\
& =C_{t}+\int_{0}^{1} \frac{\lambda}{2}\left(\frac{\left(\widetilde{P}_{t}^{*}\right)}{\left(\widetilde{P}_{t-1}^{*}\right)}-1\right)^{2} Y_{t} d j \\
& =C_{t}+Y_{t} \frac{\lambda}{2} \int_{0}^{1}\left(\frac{P_{t}}{P_{t-1}}-1\right)^{2} d j \\
& =C_{t}+Y_{t} \frac{\lambda}{2}\left(\frac{P_{t}}{P_{t-1}}-1\right)^{2} \\
\Rightarrow Y_{t} & =\left\{1-\frac{\lambda}{2}\left(\frac{P_{t}}{P_{t-1}}-1\right)^{2}\right\}^{-1} C_{t}
\end{aligned}
$$

i.e. there is an "inefficiency wedge" between output and consumption.

Induced Distortions

- Under the Calvo model, price dispersion creates distortions.
- Recall from the production function that

$$
\begin{aligned}
& Y_{t}(j)=A_{t} N_{t}(j)^{1-\alpha} \\
& \Rightarrow N_{t}(j)=\left(\frac{Y_{t}(j)}{A_{t}}\right)^{\frac{1}{1-\alpha}}
\end{aligned}
$$

Which is labour demand for firm j. Aggregation gives

$$
\begin{aligned}
N_{t}=\int_{0}^{1} N_{t}(j) d j & =\int_{0}^{1}\left(\frac{Y_{t}(j)}{A_{t}}\right)^{\frac{1}{1-\alpha}} d j \\
& =\left(\frac{Y_{t}}{A_{t}}\right)^{\frac{1}{11-\alpha}} \int_{0}^{1}\left(\frac{\left(P_{t}^{*}\right)}{P_{t}}\right)^{\frac{-\epsilon}{1-\alpha}} d j
\end{aligned}
$$

where the last line comes from plugging-in j 's demand function.

Induced Distortions

- Notice that if there is perfect price flexibility, then

$$
\int_{0}^{1}\left(\frac{\left(P_{t}^{*}\right)}{P_{t}}\right)^{\frac{-\epsilon}{1-\alpha}} d j=\int_{0}^{1}\left(\frac{P_{t}}{P_{t}}\right)^{\frac{-\epsilon}{1-\alpha}} d j=1
$$

- With rigidities though, see that

$$
\begin{aligned}
& N_{t}^{1-\alpha}=\left(\frac{Y_{t}}{A_{t}}\right)\left\{\int_{0}^{1}\left(\frac{\left(P_{t}^{*}\right)}{P_{t}}\right)^{\frac{-\epsilon}{1-\alpha}} d j\right\}^{1-\alpha} \\
& \Rightarrow Y_{t}=A_{t} N_{t}^{1-\alpha}\left\{\int_{0}^{1}\left(\frac{\left(P_{t}^{*}\right)}{P_{t}}\right)^{\frac{-\epsilon}{1-\alpha}} d j\right\}^{\alpha-1}
\end{aligned}
$$

where $\left\{\int_{0}^{1}\left(\frac{\left(P_{t}^{*}\right)}{P_{t}}\right)^{\frac{-\epsilon}{1-\alpha}} d j\right\}^{\alpha-1}<1$ [you need not show this].

- You can interpret the last equality as an aggregate production function.

Big Picture

- We want a model with price rigidity so we can think about non-neutral monetary policy.
- Ok, but what does price stickiness itself imply about welfare?
- It's a bad thing.
- It's a friction: firms are unable to update their prices freely, even if they wanted to.
- This can only hurt our economy relative to a benchmark without price rigidity.

Big Picture

- The setup of these two models allows us to think a bit about what the welfare cost of this friction is.
- In Calvo, the dispersion hurts welfare.
- In Rotemburg, the adjustment costs hurt welfare.

Roadmap

(1) Introduction

(2) Calvo Model

(3) Rotemberg Model

4 Comparing the Two Models
(5) Conclusion

Takeaways

- We looked at two forms of modelling price stickiness.
- Both create distortions.
- Different sources of distortion though.

