
Applied Computational Economics

Problem Set 0

Prologue on Numerical Solutions, Coding and Matlab

The University of Nottingham

2020

Q1 (Find). Create a 101 × 1 array and fill it with the numbers from 100 to 200. Use the find
command to get the array index, which contains the number 151.

Q2 (Pseudo-random numbers). Draw a vector of pseudo-random numbers of size 10×1 using the
rand command.

Q3 (Pseudo-random generator seed). What is a pseudo-random number seed? Run the following
sequence of commands to find out.

1. Set the seed to 10 using the rng command.

2. Draw a 10× 1 vector of pseudo-random numbers using this seed.

3. Draw another 10× 1 vector of pseudo-random numbers using this seed.

4. Use the rng command to set the seed back to 10.

5. Repeat steps 2 and 3 again. What do you notice?

Q4 (Functions and plots). Generate a 10 × 1 vector of numbers denoted by ~v, in order, from 1
through 9. Create a function that takes this array as an input. Denote the function’s output
by ~w, which is also a 10× 1 vector. The output takes each element of ~v, (denote the ith entry
by ~vi) and transforms it using the equation wi = 10~vi − 5 for i ∈ {1, ..., 10}. After calling
the function, plot the output ~w using the plot command. Label the horizontal axis v using
the xlabel command and the vertical axis w using the ylabel command. Create a title for the
figure using the title command and a legend using the legend command.

Q5 (Vectorisation). Consider the multivariate function

f(x, y) = xy − y2.

Let’s think about maximising this function with respect to y for a fixed value of x. That is
— we seek to find a function y∗(x), which maximises f(x, y).

1. Find y∗(x) analytically (using pen and paper).

Now let’s think about finding y∗(x) numerically with Matlab. Let’s restrict our attention to
values of x over the interval x̄ = [1, 1000].

2. Discretise the space x̄ by creating a array of gridpoints, denoted by ~x, over the interval
x̄. Create this array such that its first entry is 1 and it increases by intervals of 0.1 all
the way up to 1000.

1

Let’s restrict our permissible choices of the y variable to be contained to the same grid as x:
i.e. ~y = ~x.

We’ll now solve this problem numerically using two methods — the first using nested for loops
and the second using vectorisation. For the first approach:

3. Use the size command to find the dimensionality of the array ~x. Denote the answer |~x|.
Obviously since ~y = ~x, it follows that |~y| = |~x|.

4. Use two nested for loops (over the x and y values) to fill an array of size |~x| × |~y| with
all permissible values of f(x, y). Hint: fill in the formula for f(x, y) on the right-side of
the equality on line 3 below.

1 for i = 1: length(x_vec)

2 for j = 1: length(y_vec)

3 f(i,j) = ;

4 end

5
6 end

5. Using the max command, find the optimal y variable gridpoint from ~y, that maximises
f(x, y) for a given value of x ∈ ~x. Hint: your use of the max command should go on line
5 above.

6. Time the execution of the two nested loops using the tic and toc commands. Plot the
solution for y∗(x).

Now let’s think about the vectorisation approach. Vectorising refers to the process of writing
your code in terms of matrix operations rather than loops. Since Matlab is designed for
processing matrices, this is the desirable approach (when possible).

We can vectorise the code by creating a 2D matrix, which gives all possible values of f(x, y),
given our discretised vectors ~x and ~y. Let’s denote this matrix by F . The idea is that the
rows of this matrix will correspond to our possible x values and the columns correspond to
our permissible choices of y. Your optimal choice of y for a given x is then the column that
offers the highest value of the F matrix for a given row.

7. Create a matrix called X of size |~x| × |~y|. Each column, from first row to last, should
contain a copy of the ~x array.

8. Create a matrix called Y of size |~x| × |~y|, which is simply the transpose of X.

9. Create the F matrix using X and Y , in addition to Matlab’s matrix operations.

10. Use the max command to find the column of F , which offers the highest value, for a
given row.

11. Time the execution of this vectorised code using the tic and toc commands. How does
the speed of this code compare to the nested for loops?

2

