
Applied Computational Economics

Lab 0

Introduction to Numerical Solutions and Coding

The University of Nottingham

Q1 See the codes.

Q2 See the codes.

Q3 This is an interesting concept. Pseudo-random numbers are what a computer can generate
for us. They’re not really random in the sense that, conditional upon a seed, the numbers
that are drawn subsequent will always be the same and appear in the same order. In the
question, your 10× 1 vector in step 2 should be the same as the first 10× 1 vector you draw
in step 5, (after you’ve re-set the seed). This is something we’ll need to bear in mind later on
when simulating artificial datasets.

Q4 See figure 1. The code main calls the function file myfun.m for this part. You’ll need them
both to be in the same directory for the call to work properly.

1 2 3 4 5 6 7 8 9

v

0

10

20

30

40

50

60

70

80

90

w

Figure

w

Figure 1: Figure for Q3

Q5 The analytical solution should just be y(x) = x
2 , giving f(x, y(x)) = x2

4 . Go through the code
line-by-line a few times to understand the differences here. The vectorised code is definitely

1

faster, but not to the degree that I was expecting before coding it up. The nested loops take
3.7 seconds versus the vectorised code that takes 2.6 seconds. Figure 2 shows the numerical
solutions for y∗(x) and f(x, y∗(x)).

0 100 200 300 400 500 600 700 800 900 1000

x

0

50

100

150

200

250

300

350

400

450

500

y
(x

)

0 100 200 300 400 500 600 700 800 900 1000

x

0

0.5

1

1.5

2

2.5

f(
x
,y

(x
))

105

Figure 2: Numerical solutions for Q5

Let’s think a little bit more about the vectorised part of the code. Again you should think
about the rows of the F matrix as resembling the index value of the array x⃗ while the columns
resemble the index value of the y variable. Let’s visualise what’s happening symbolically
on paper. To simplify the exposition let’s reduce the dimensionality to |x⃗| = |y⃗| = 3 and
x⃗ = (x1, x2, x3) with y⃗ = (y1, y2, y3) (to make this super clear, assume that y⃗ ̸= x⃗). We want
to create a matrix X with each column as the vector x⃗ as

X =

 x1 x1 x1

x2 x2 x2

x3 x3 x3


in addition to a matrix Y where each rows is the vector y⃗ as

Y =

 y1 y2 y3
y1 y2 y3
y1 y2 y3

 .

So see that x is held constant along the rows of X while y is held constant down the columns
of Y . Then we can create the matrix F such that

F = X. ∗ Y − Y.2

=

 x1y1 − y21 x1y2 − y22 x1y3 − y23
x2y1 − y21 x2y2 − y22 x2y3 − y23
x3y1 − y21 x3y2 − y22 x3y3 − y23

 .

2

where again recall that the . (e.g. X. ∗ Y) stands for Matlab’s element-by-element operator.
The first row of F gives all three possible values of the objective function, where each option
is for a different value of the y variable with x1 fixed. Thus if we select the column that yields
the biggest value, we will have maximised the objective conditional on x1. The maximising
column number gives the index in the y⃗ array. E.g. if column 3 maximises the objective, then
y3 will be y∗(x1). Then when you want to have the grids for x and y to be the same, as we
do in this problem, you can perform the above where Y = X ′.

3

