# Applied Computational Economics 

Lab 0
Introduction to Numerical Solutions and Coding

The University of Nottingham

Q1 See the codes.
Q2 See the codes.
Q3 This is an interesting concept. Pseudo-random numbers are what a computer can generate for us. They're not really random in the sense that, conditional upon a seed, the numbers that are drawn subsequent will always be the same and appear in the same order. In the question, your $10 \times 1$ vector in step 2 should be the same as the first $10 \times 1$ vector you draw in step 5 , (after you've re-set the seed). This is something we'll need to bear in mind later on when simulating artificial datasets.

Q4 See figure 1 The code main calls the function file myfun.m for this part. You'll need them both to be in the same directory for the call to work properly.


Figure 1: Figure for Q3

Q5 The analytical solution should just be $y(x)=\frac{x}{2}$, giving $f(x, y(x))=\frac{x^{2}}{4}$. Go through the code line-by-line a few times to understand the differences here. The vectorised code is definitely
faster, but not to the degree that I was expecting before coding it up. The nested loops take 3.7 seconds versus the vectorised code that takes 2.6 seconds. Figure 2 shows the numerical solutions for $y^{*}(x)$ and $f\left(x, y^{*}(x)\right)$.


Figure 2: Numerical solutions for Q5

Let's think a little bit more about the vectorised part of the code. Again you should think about the rows of the $F$ matrix as resembling the index value of the array $\vec{x}$ while the columns resemble the index value of the $y$ variable. Let's visualise what's happening symbolically on paper. To simplify the exposition let's reduce the dimensionality to $|\vec{x}|=|\vec{y}|=3$ and $\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$ with $\vec{y}=\left(y_{1}, y_{2}, y_{3}\right)$ (to make this super clear, assume that $\left.\vec{y} \neq \vec{x}\right)$. We want to create a matrix $X$ with each column as the vector $\vec{x}$ as

$$
X=\left[\begin{array}{lll}
x_{1} & x_{1} & x_{1} \\
x_{2} & x_{2} & x_{2} \\
x_{3} & x_{3} & x_{3}
\end{array}\right]
$$

in addition to a matrix $Y$ where each rows is the vector $\vec{y}$ as

$$
Y=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3} \\
y_{1} & y_{2} & y_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right]
$$

So see that $x$ is held constant along the rows of $X$ while $y$ is held constant down the columns of $Y$. Then we can create the matrix $F$ such that

$$
\begin{aligned}
F & =X . * Y-Y .^{2} \\
& =\left[\begin{array}{lll}
x_{1} y_{1}-y_{1}^{2} & x_{1} y_{2}-y_{2}^{2} & x_{1} y_{3}-y_{3}^{2} \\
x_{2} y_{1}-y_{1}^{2} & x_{2} y_{2}-y_{2}^{2} & x_{2} y_{3}-y_{3}^{2} \\
x_{3} y_{1}-y_{1}^{2} & x_{3} y_{2}-y_{2}^{2} & x_{3} y_{3}-y_{3}^{2}
\end{array}\right] .
\end{aligned}
$$

where again recall that the . (e.g. $X . * Y$ ) stands for Matlab's element-by-element operator. The first row of $F$ gives all three possible values of the objective function, where each option is for a different value of the $y$ variable with $x_{1}$ fixed. Thus if we select the column that yields the biggest value, we will have maximised the objective conditional on $x_{1}$. The maximising column number gives the index in the $\vec{y}$ array. E.g. if column 3 maximises the objective, then $y_{3}$ will be $y^{*}\left(x_{1}\right)$. Then when you want to have the grids for $x$ and $y$ to be the same, as we do in this problem, you can perform the above where $Y=X^{\prime}$.

