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Q1

(a) The state variables are the capital stock and the labour earnings shock. We can then write
the Bellman equation as

v(k, s) = max
c,k′

c1−σ

1− σ
+ βEv(k′, s′)

where

c = (1− δ + r)k + sw − k′

s ∼ G(s|s−)

where s− denotes the previous period’s value of the labour earnings shock. Notice that I’ve
combined the capital law of motion with the budget constraint.

(b) A quick note about the gridsearch procedure. Let’s denote the current guess of the value
function in the computational VFI procedure as vn(k), where note that the s argument is
dropped due to the parametric assumptions in this part of the problem. Notice that the code
then generates a temporary value function of the following form

ṽ(k, k′) =
[(1− δ + r)k + w − k′]1−σ

1− σ
+ βvn(k

′) (1)

where see that the max operator has disappeared. In addition, an extra argument has been
added to the left-side of equation 1 for the choice of next period’s capital stock. We evaluate
1 for all the possible choices of k′ and in the next step of the algorithm, maximise over this
variable to yield the value function update vn+1(k) as

vn+1(k) = max
k′

ṽ(k, k′).

This is the essence of gridsearch — evaluate all possible choices of your control variable, then
select the value that gives the largest objective. See figure 1 for the policy and value functions.
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Figure 1: Policy and value functions for part (b)
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Figure 2: Policy and value functions for part (c)

(c) See figure 2 for the policy and value functions. In the context of part (b), the households
were dis-saving for any given level of the capital stock. The opposite is true here: they’ll save
more than they have at time t since the interest rate is so generous. In fact: you can see
from the policy function for (c) that the interest rate is so generous that they actually hit the
upper-bound for the capital stock.
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Figure 3: Policy and value functions for part (d)

(d) See figure 3. The household still saves more than their current capital stock always! All
because the return is still super-high! What’s going on?
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Figure 4: Policy and value functions for part (e)

(e) See figure 4. The interest rate and wage are always constant in this problem since it’s in
partial equilibrium. Since these prices aren’t a function of the household’s capital stock, we
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can never find a unique steady state capital stock that sits above zero, (i.e. no point that
crosses the 45 degree line above zero). In the case of part (b), the unique steady state would
be zero capital, in contrast with parts (c) and (d) where the capital stock explodes due to the
high interest rate. There is one more case that quickly deserves some attention though. You
can find the Euler equation for the problem to be

c−σ
t = βc−σ

t+1[r + 1− δ],

where a steady state exists where ct = ct+1, giving a relationship between the parameters of
1 = β[r+1−δ]. The policy and value functions for this particular case are plotted in figure 4,
(where δ and β are as in Q1 with r set such that the steady state holds). Every capital stock
value gives a steady state. Although these solutions are all valid, they really motivate the
need to think about some concept of general equilibrium, such that the household’s savings
decisions are reflected in asset returns, allowing us to find an interior steady state. We’ll
tackle this in the next lecture and exercise set.

Q2
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Figure 5: Policy and value functions for part Q2

Figure 5 shows the policy and value functions for Q2 (for the two different values of s) and contrasts
with that for the deterministic model of Q1. The two functions for the stochastic version of the
model sit either side of that from Q1. A household with more (less) labour earnings chooses to
invest more (less) uniformly for their current capital state.

Let’s think a bit more about the expectation part inside the code. Take a simpler example. Imagine
that we have some function f(z) for some variable z ∈ R. Say that z is a random variable that
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follows a Markov process z ∼ G(z′|z). Assume that z ∈ {zL, zH}. The expectation of f(z′) is then
given by

Ez′|z[f(z
′)] = G(zL|z)f(zL) +G(zH |z)f(zH).

The analogue of how I’m constructing this in the code is as follows. Define a variable M and follow
the three steps:

1. Set M = 0 to initialise,

2. Compute 1st update M = M +G(zL|z)f(zL),

3. Compute 2nd update M = M +G(zH |z)f(zH),

where M = Ez′|z[f(z
′)] after the execution of the final step. It’s easy to then extend to a for-loop

like we have in the code, (which is important to do if you have a large state space for the stochastic
variable). Notice also — it’s absolutely critical to set M = 0 before proceeding to the cumulative
sums. Otherwise, if the computation is embedded inside some other loop as it is in our code, the
M variable will just explode.

Q3
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Figure 6: Policy and value functions for Q3 with 31 gridpoints
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Figure 7: Policy and value functions for Q3 with 51 gridpoints
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Figure 8: Policy and value functions for Q3 with 101 gridpoints

Figures 6, 7 and 8 present the policy and value functions for 31, 51 and 101 capital gridpoints
respectively. The results are as you would expect: the accuracy of the policy functions improves
with the number of gridpoints. The computation times also increase quite a bit. On my desktop,
the times are 6.00, 8.81 and 14.88 seconds for each of the three respective runs. How do they
compare with the results of the gridsearch from Q1? The policy function in figure 8 comes pretty
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close, which is neat since it uses 5 times fewer gridpoints as Q1.
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