Applied Computational Economics
Lab 2
Solving Representative Agent General Equilibrium Models

The University of Nottingham

Q1

1. The state variables for the household are k and K. Their problem is then given by

l—0o
v(k,K) = I?’%,X 1—o + ﬂv(k/aK/) (1)
c=R(K)k+W(K)+II(K)+ (1—-08)k—F

K' = G(K)

where G(K) is the aggregate capital law of motion. Denote the household’s policy function
for £ as g(k, K).

2. Just the basic first order conditions

where II(K) = 0 in equilibrium.

3. A recursive competitive equilibrium is defined as a set of functions G(K), g(k, K), v(k, K),
R(K) and W(K) such that
e G(K) is the aggregate capital law of motion,
e g(k, K) is the household’s capital policy function,
e v(k, K) is the household’s value function,
e R(K) is the rental rate on capital,
e W(K) is the wage rate on labour,
e v(k,K), g(k, K) come from the household’s optimisation problem (TJ),
e The factor returns are determined endogenously through the firm’s problem ,
e The labour, goods and capital markets clear and
e Consistency is satisfied g(k, K) = G(K).

4. From the household’s problem, we can get the Euler equation for capital investment as

1=3 <Ct+1> - {aK27 + (1 -6)} (3)

Ct

where notice I've used the market clearing condition for labour 1 = N, V¢ in addition to
substituting-out the factor return to capital. To get the steady state capital stock, impose
that ¢;41 = ¢; Vt and that Ky = K;;; Vt and then re-arrange to obtain

(o)

5. See the code PS3_2021.m. Note that you also need to use the lin_int_v_PS3_2021.m file to do
the linear interpolation. The way you solve this problem is effectively
a. Conjecture G(K), (which I've just set equal to K in the code),

b. With this conjecture, solve the household’s problem to get g(k, K) using value function
iteration.

c. Update G(K) to reflect its difference from g(k = K, K).
d. Return to step b and keep repeating until g(k = K, K) and G(K) have converged.
The update slowly part pertains to step ¢ in the above. How should we update the aggregate

law of motion? Recall that the general procedure for value function iteration (used in step b
above and in PS2) had the following procedure

i. Conjecture an initial value function for the household vg, (which I just set to zero in the
code).

ii. Get a new update for the value function v; using the functional equation

1—-0o

v1(k, K) = max ¢

ok 1 —0o

+ 6’1}0(](3/, K/)

where we just stick the initial guess on the right-side of the equation.
iii. Update the conjecture such that vy = v;.

iv. Return to step ii and continue until convergence.

In this VFI procedure, we set vo = v (in step iii). That is — we take the new version of the
value function as the updated guess. The natural analogue with the capital law of motion
is to set G(K) = g(k = K, K) at step ¢ in the above. The problem with this though is
that, since the consistency loop is not a contraction, there is no guarantee of convergence (or
monotonic convergence for that matter). As a result, we need to be a bit more delicate with
the updating rule. If you denote the initial guess in step a above as Go(K), then the rule that
T use for updating in step c¢ is Go(K) = 0.95Go(K) + 0.05g(k = K, K). So most of the new
law of motion is coming from the initial guess.

Using this gradual updating approach obviously means more iterations are required overall
since there are only very small adjustments happening to the law of motion in each iteration.

335 T T T T T T

3371

325

321

K(t+1)

3.15

Law of motion
45 degree

31r 1

3.05 1

1

1

3 3.05 3.1 3.15 3.2 3.25 3.3 3.35

Figure 1: Interpolation law of motion for capital

It’s particularly necessary though given that the problem is discretised; we take the interval
for capital and chop it up into grid points. Since in effect we’re iterating on an index over that
discretised grid, we can end up with a situation where the difference bounces between two
gridpoints, switching back and forth at each iteration. This can prevent proper convergence.
See the next part with gridsearch to get a better idea of what I mean by this. Figure[l] shows
the resulting law of motion from interpolation.

. Figure [2 shows the numerical law of motion found for the 151 and 251 gridpoint gridsearch
solutions. Look at how rough these solutions are relative to the interpolation case! Again
this is related to the fact that we’re iterating to get consistency on a coarse grid for capital.
We're going from K € {K,..., K} to a law of motion that’s from the same set of gridpoints.
In my code, when I would run for the gridsearch solutions, often the difference between G(K)
and g(k = K, K) would often stay constant for several iterations at a time, (for fewer grids,
the while loop wouldn’t actually converge properly). This is because the maximal difference
between the two functions would just bounce between two gridpoints. E.g. say on iteration
n, the maximal difference is for gridpoint K;. Often on iteration n+ 1, the maximal difference
would be for gridpoint K; for j # i. Then on iteration n + 2, the difference would be largest
for K; again and so on. This “bouncing back and forth” behaviour makes convergence difficult
and makes the law of motion a bit jagged and discontinuous.

3.35

3.3

3.2

3.1

3.35

251 grids
45 degree

151 grids 7 3.15
45 degree

3.05 31 3.15 3.2 3.25 3.3 3.35 3 3.05 3.1 3.15 3.2 3.25 3.3
Figure 2: Gridsearch law of motion for capital

The takeaway from this exercise and comparing figures [I| and [2| is the following. There are
just some types of algorithms that we use, which are better suited to interpolation over the
value function rather than gridsearch. It’s the fact that we’re trying to get consistency for a
policy function for a discretised variable in the aggregate that makes it the better technique
in this particular example.

3.35

