Applied Computational Economics Problem Set 4
 Solving Heterogeneous Agent General Equilibrium Models with Aggregate Uncertainty

The University of Nottingham

2020

Q1

Here we'll try to go for a rough solution to the Krusell and Smith (1998) model with aggregate uncertainty. The recursive formulation for the household is the following

$$
v(k, e ; z, \mu)=\max _{c, k^{\prime}} \frac{c^{1-\sigma}}{1-\sigma}+\beta \mathbb{E}_{e^{\prime}, z^{\prime}}\left[v\left(k^{\prime}, e^{\prime} ; z^{\prime}, \mu^{\prime}\right)\right]
$$

subject to

$$
\begin{aligned}
c+k^{\prime} & =w(z, K) \bar{e} e+\{1-\delta+r(z, K)\} k \\
\mu^{\prime} & =G\left(\mu, z, z^{\prime}\right) \\
k & \geq 0
\end{aligned}
$$

where the first constraint is that for the household's budget, the second is the law of motion the cross-sectional distribution and the third ensures capital's non-negativity. The variable e_{t} is an idiosyncratic employment shock, such that $e_{t} \in\{0,1\}$, which denotes unemployed and employed respectively. The parameter $\bar{e} \in[0,1]$ is an exogenous work time endowment for the household. That is - since the labour supply doesn't enter the utility function of the household directly, when employed the household will supply \bar{e} in the labour market. Object μ is the cross-sectional distribution of agents across the space of capital and employment shocks. Variables $w(z, K)$ and $r(z, K)$ are the wage and rental rate for capital respectively. K denotes the aggregate capital stock and z denotes aggregate productivity. Assume that the firms produce using the production function

$$
Y=z K^{\alpha} L^{1-\alpha}
$$

where Y denotes aggregate output and L denotes aggregate labour.

1. Re-write the above recursive formulation in the language of Krusell and Smith (1998). Explain any concepts relating to approximations and the like.
2. Write-down the factor market clearing conditions for this economy.
3. Explain the steps involved in the Krusell and Smith (1998) computational algorithm.
4. Assume that $e_{t} \in\{0,1\}$ and that $z_{t} \in\{1.01,0.99\}$. These two stochastic variables are assumed to evolve with a joint Markov process over time. We'll use the Markov process given in the file on the course website called PS4_transition_matrix.m. This matrix outputs the joint transition, called Q_trans. This matrix is structured such that rows and columns read pairs $(\mathrm{z}(1), \mathrm{e}(1)),(\mathrm{z}(1), \mathrm{e}(2)),(\mathrm{z}(2), \mathrm{e}(1)),(\mathrm{z}(2), \mathrm{e}(2))$ where $z(1)=1.01, z(2)=0.99, e(1)=0$, $e(2)=1$. The way you can visualise this matrix is as follows

$$
Q\left(z^{\prime}, e^{\prime} \mid z, e\right)=\left[\begin{array}{llll}
q(z(1), e(1) \mid z(1), e(1)) & q(z(1), e(2) \mid z(1), e(1)) & q(z(2), e(1) \mid z(1), e(1)) & q(z(2), e(2) \mid z(1), e(1)) \\
q(z(1), e(1) \mid z(1), e(2)) & q(z(1), e(2) \mid z(1), e(2)) & q(z(2), e(1) \mid z(1), e(2)) & q(z(2), e(2) \mid z(1), e(2)) \\
q(z(1), e(1) \mid z(2), e(1)) & q(z(1), e(2) \mid z(2), e(1)) & q(z(2), e(1) \mid z(2), e(1)) & q(z(2), e(2) \mid z(2), e(1)) \\
q(z(1), e(1) \mid z(2), e(2)) & q(z(1), e(2) \mid z(2), e(2)) & q(z(2), e(1) \mid z(2), e(2)) & q(z(2), e(2) \mid z(2), e(2))
\end{array}\right]
$$

where each little q is a conditional probability. The sum across rows comes to unity. We'll take one period in the model to be a month. This file also contains the transition matrix for the productivity state only $Q\left(z^{\prime} \mid z\right)$, which it calls Q_agg. Using the parametrisation in table 1. implement the Krusell and Smith (1998) algorithm. Use an upper bound for k of $\bar{e} \frac{1-\alpha}{\alpha} * 2$.

Parameter	Value
β	0.99
σ	2.00
δ	0.02
α	0.36
\bar{e}	0.33

Table 1: Parameterisation

